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Preface 

 

The present book is a collection of several survey articles written by people from Assam, describing 
mainly their work. The topics selected are from various areas of mathematics and statistics. The 
book begins with five articles in algebra enunciating the recent developments in those areas. Then 
we have five articles in number theory with topics ranging from congruences to partitions and 
finally to Pell's equations. The rest of the articles present some advances in game theory, topology, 
functional analysis and statistics. 

It is hoped that this book would serve as a ready reference for someone who is interested in the 
topics presented here. A generous sprinkling of open problems in almost all the articles makes it 
easy to look for research problems in these areas and the editor hopes that it will serve the 
mathematical community well. 
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Some results on commuting probability,
n-centralizer rings and non-commuting
graph of finite rings

Jutirekha Dutta
Department of Mathematical Sciences, Tezpur University, Sonitpur, Assam, India

email: jutirekhadutta@yahoo.com

Abstract. The commuting probability of a finite ring R, denoted by Pr(R), is the probability
that a randomly chosen pair of elements of R commute. In this chapter, we describe some results
on commuting probability and its relations with n-centralizer rings and non-commuting graphs of
finite rings.

2010 Mathematical Sciences Classification. 16U70.

Keywords. finite ring, centralizer, commuting probability.

1 Introduction

Let F be an algebraic system having finite number of elements which is closed under a multiplication
operation. The commuting probability of F , denoted by Pr(F ), is the probability that a randomly
chosen pair of elements of F commute. That is

Pr(F ) =
|{(x, y) ∈ F × F : xy = yx}|

|F × F |
.

Note that Pr(F ) = 1 if and only if F is commutative.
Many papers have been written on commuting probability of finite groups in the last few decades,

for example see [9, 19, 20, 21, 22, 23, 25, 27] etc., starting from the works of Erdős and Turán
[ETa68].

The study of commuting probability of a finite ring was neglected over the years. At this
moment, we have only a handful of papers on this topic including [24] where MacHale initiated the
study of commuting probability of a finite ring. In the year 1976, MacHale [24] showed that for any
finite ring R, Pr(R) /∈ ( 5

8 , 1). After many years, in the year 2013, MacHale resumed the study of
commuting probability of finite rings together with Buckley and Shé (see [7, 8]). Buckley, MacHale
and Shé [8] also introduced the concept of Z-isoclinism between two finite rings.
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4 Jutirekha Dutta

Throughout this article R denotes a finite ring and Z(R) denotes the center of R. That is,
Z(R) = {x ∈ R : xy = yx for all y ∈ R}. For any two elements r, t ∈ R, we write [r, t] to denote
the additive commutator of r and t. That is, [r, t] = rt − tr. Also, for any x ∈ R, we write [x,R]
to denote the subgroup of (R,+) consisting of elements of the form [x, y] where y ∈ R and [R,R]
to denote the subgroup of (R,+) consisting of elements of the form [r, t] where r, t ∈ R. Again,
we write R

S to denote the additive quotient group, for any subring S of R, and |R : S| to denote

the index of (S,+) in (R,+). Further, if S is an ideal of R then we also write R
S to denote the

quotient ring. The isomorphisms considered are the additive group isomorphisms. Two rings R1

and R2 are said to be Z-isoclinic if there exist additive group isomorphisms φ : R1

Z(R1) →
R2

Z(R2)

and ψ : [R1, R1]→ [R2, R2] such that ψ([u, v]) = [u′, v′] whenever φ(u+ Z(R1)) = u′ + Z(R2) and
φ(v + Z(R1)) = v′ + Z(R2). Equivalently, the following diagram commutes

R1

Z(R1) ⊗
R1

Z(R1)

φ⊗φ−−−−→ R2

Z(R2) ⊗
R2

Z(R2)yaR1

yaR2

[R1, R1]
ψ−−−−→ [R2, R2]

where Ri
Z(Ri)

⊗ Ri
Z(Ri)

denotes tensor product of Ri
Z(Ri)

with itself for i = 1, 2;

aRi : Ri
Z(Ri)

⊗ Ri
Z(Ri)

→ [Ri, Ri], i = 1, 2 are well defined maps given by

aRi((xi + Z(Ri))⊗ (yi + Z(Ri))) = [xi, yi]

for all xi, yi ∈ Ri and i = 1, 2; and

(φ⊗ φ)((x1 + Z(R1))⊗ (y1 + Z(R1))) = (x2 + Z(R2))⊗ (y2 + Z(R2))

whenever φ(x1 + Z(R1)) = x2 + Z(R2) and φ(y1 + Z(R1)) = y2 + Z(R2). The above diagram
commutes means

aR2
◦ (φ⊗ φ) = ψ ◦ aR1

.

The pair of mappings (φ, ψ) is called a Z-isoclinism between R1 and R2. Buckley, MacHale and
Nı́shé [8] showed that the commuting probabilities of two finite Z-isoclinic rings are same.

Let Cent(F ) = {CF (x) : x ∈ F}, where CF (x) = {y ∈ F : xy = yx}. F is called n-centralizer if
|Cent(F )| = n. The study of finite n-centralizer group was initiated by Belcastro and Sherman [6],
in the year 1994. Following them, many Mathematicians have studied finite n-centralizer groups in
the recent years (see for example [1, 2, 3, 4, 5, 6, 10] etc.).

The non-commuting graph of a finite ring R, denoted as Γ(R), is a graph whose vertex set is
R\Z(R) and there is an edge between two vertices a and b if and only if ab 6= ba. The notion of non-
commuting graph of a finite ring was introduced by Erfanian, Khashyarmanesh and Nafar [18]. It
is worth mentioning that commuting graph of finite group was originated from a problem on groups
posed by Paul Erdős [26]. In this chapter, we describe some results on commuting probability and
its relations with n-centralizer rings and non-commuting graphs of finite rings.

Let G and H be any two graphs. We write V (G) and E(G) to denote the set of vertices and the
set of edges of G respectively. Let d(x, y) be the length of the shortest path from the vertices x to
y. Then the diameter of G, denoted by diam(G), is given by max{d(x, y) : x, y ∈ V (G)}. The girth
of G, denoted by girth(G), is the length of the shortest cycle in G. We write deg(v) to denote the
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degree of a vertex v, which is the number of edges incident on v. A dominating set of a graph G is
a subset D of V (G) such that every vertex in V (G) \D is adjacent to at least one member of D. A
bijective map f : V (G) → V (H) is called an isomorphism between the graphs G and H if any two
vertices u, v ∈ V (G) are adjacent if and only if f(u), f(v) ∈ V (H) are adjacent. If there exists an
isomorphism between two graphs then the graphs are said to be isomorphic.

2 Bounds for commuting probability of finite rings

We begin this section with the following three central problems in the study of commuting proba-
bility of a finite ring R.

(i) Which real numbers belonging to (0, 1] can be realized as commuting probability for some
finite ring. In other words, if R denotes the set of all finite rings then determine the set
{Pr(R) : R ∈ R}.

(ii) Is it possible to characterize finite rings in terms of its commuting probability?

(iii) Is it possible to obtain some bounds for Pr(R) in terms of some well-known ring-theoretic
notions?

In 1976, MacHale [24] proved the following results related to the above problems.

Theorem 2.1. [24, Theorem 1] If R is a finite non-commutative ring then Pr(R) ≤ 5
8 . The equality

holds if and only if |R : Z(R)| = 4.

Above theorem shows that there is no finite ring R such that Pr(R) ∈ ( 5
8 , 1).

Theorem 2.2. [24, Theorem 2] Let R be a non-commutative ring and p the smallest prime dividing
order of R. Then

Pr(R) ≤ p2 + p− 1

p3
.

The equality holds if and only if |R : Z(R)| = p2.

Theorem 2.3. [24, Theorem 4] If S is a subring of a finite ring R then Pr(R) ≤ Pr(S).

In [11], we have obtained the following bounds for Pr(R).

Theorem 2.4. [11, Theorem 2.1(a)] Let R be a finite non-commutative ring. If p is the smallest
prime dividing |R| then

Pr(R) ≥ |Z(R)|
|R|

+
p(|R| − |Z(R)|)

|R|2

with equality if and only if |CR(r)| = p for all r /∈ Z(R).

Let K(R,R) denotes the set {[s, r] : s ∈ R, r ∈ R} and [R,R] denotes the subgroup of (R,+)
generated by K(R,R). Then we have the following bounds.



6 Jutirekha Dutta

Theorem 2.5. [11, Theorem 2.4] Let R be a finite ring. Then

Pr(R) ≥ 1

|K(R,R)|

(
1 +
|K(R,R)| − 1

|R : Z(R)|

)
with equality if and only if |K(R,R)| = |[r,R]| for all r ∈ R \ Z(R). In particular, if R is non-
commutative then Pr(R) > 1

|K(R,R)| .

Theorem 2.6. [11, Theorem 2.5] Let R be a finite ring. Then

Pr(R) ≥ 1

|[R,R]|

(
1 +
|[R,R]| − 1

|R : Z(R)|

)
with equality if and only if |[R,R]| = |[r,R]| for all r ∈ R \ Z(R). In particular, if R is non-
commutative then Pr(R) > 1

|[R,R]| .

We observe that the lower bound obtained in Theorem 2.5 is better than the lower bounds
obtained in Theorem 2.4 and Theorem 2.6.

We have also obtained the following upper bounds.

Theorem 2.7. [11, Theorem 2.1(b)] Let R be a finite non-commutative ring. If p is the smallest
prime dividing |R| then

Pr(R) ≤ (p− 1)|Z(R)|+ |R|
p|R|

with equality if and only if |R : CR(r)| = p for all r /∈ Z(R).

Theorem 2.8. [11, Theorem 2.3] Let N be an ideal of a finite non-commutative ring R. Then

Pr(R) ≤ Pr(R/N) Pr(N).

The equality holds if N ∩ [R,R] = {0}.

We observe that the upper bound obtained in Theorem 2.7 is better than Theorem 2.2 and
Theorem 2.8 is an improvement of Theorem 2.3.

3 Commuting probability and n-centralizer finite rings

A ring R is called an n-centralizer ring if |Cent(R)| = n. In [13], we introduce and study n-
centralizer finite rings. Some of the results are given below.

Proposition 3.1. [13, Proposition 2.1] R is a commutative ring if and only if R is 1-centralizer
ring.

Theorem 3.2. [13, Theorem 2.6] For any non-commutative ring R,

|Cent(R)| ≥ 4.

Theorem 3.3. [13, Theorem 2.12] Let R be a non-commutative ring whose order is a power of a
prime p. Then |Cent(R)| ≥ p+ 2, and equality holds if and only if R

Z(R)
∼= Zp × Zp.
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Theorem 3.4. [13, Theorem 3.2] Let R be a non-commutative finite ring. Then R is a 4-centralizer
ring if and only if R

Z(R)
∼= Z2 × Z2.

Theorem 3.5. [13, Theorem 4.3] Let R be a finite ring. Then R is a 5-centralizer ring if and only
if R

Z(R)
∼= Z3 × Z3.

In [16], we have also obtained the following results.

Theorem 3.6. [16, Theorem 3.3] If R is a 6-centralizer finite ring then

R

Z(R)
∼= Z2 × Z2 × Z2,Z2 × Z6,Z2 × Z8,Z2 × Z2 × Z4 or Z2 × Z2 × Z2 × Z2.

Theorem 3.7. [16, Theorem 3.5] Let R be a finite 7-centralizer ring. Then

R

Z(R)
∼= Z2 × Z2 × Z6 or Z5 × Z5.

The following theorems give commuting probabilities of some finite n-centralizer rings.

Theorem 3.8. [13, Theorem 5.4] and [16, Theorem 2.2] Let R be a non-commutative ring whose

order is a power of a prime p. Then R is (p+ 2)-centralizer ring if and only if Pr(R) = p2+p−1
p3 .

Theorem 3.9. [16, Theorem 2.3(a)] Let R be a finite ring. Then R is 4-centralizer if and only if
Pr(R) = 5

8 .

Theorem 3.10. [16, Theorem 2.3(b)] If R is a finite 5-centralizer ring then Pr(R) = 11
27 .

Theorem 3.11. [16, Theorem 3.4] If R is a 6-centralizer finite ring such that R
Z(R) is not isomor-

phic to Z2 × Z2 × Z4 and Z2 × Z2 × Z2 × Z2 then Pr(R) ∈ { 7
16 ,

35
72 ,

29
64}.

Theorem 3.12. [16, Theorem 3.6] Let R be a finite 7-centralizer ring such that R
Z(R) is not iso-

morphic to Z2 × Z2 × Z6. Then Pr(R) = 29
125 .

4 Commuting probability and non-commuting graph of rings

The notion of non-commuting graph of a finite ring was introduced and studied by Erfanian,
Khashyarmanesh and Nafar [18] recently. They have obtained the following results.

Theorem 4.1. [18, Theorem 2.1] Let R be a finite non-commutative ring. Then diam(ΓR) ≤ 2
and girth(ΓR) = 3.

Theorem 4.2. [18, Theorem 2.2] Let R be a finite non-commutative ring. Then ΓR is complete if
and only if |R| = 4.

Theorem 4.3. [18, Proposition 2.5] Let R be a finite non-commutative ring. Then a subset S of
V (ΓR) is a dominating set of ΓR if and only if CR(S) ⊆ Z(R) ∪ S.

Some of the results, obtained in [12], are as follows.

Proposition 4.4. [12, Proposition 2.1] Let R be a finite ring. Then



8 Jutirekha Dutta

1. ΓR is connected.

2. ΓR is empty graph if and only if R is commutative.

Theorem 4.5. [12, Theorem 2.2, Theorem 2.4] Let R be a finite non-commutative ring. Then

1. ΓR is not a star graph or a lollipop graph or a bipartite graph.

2. ΓR is not a complete graph for any finite non-commutative ring R with unity.

Theorem 4.6. [12, Corollary 2.6] Let R be a finite non-commutative ring with unity and S =
{s1, s2, . . . , sn} a generating set for R. If S ∩ Z(R) = {sm+1, . . . , sn} then D = {s1, s2, . . . , sm} is
a dominating set for ΓR.

The following two results give relations between ΓR and Pr(R).

Theorem 4.7. [12, Theorem 3.1] Let R be a finite non-commutative ring. Then the number of
edges of ΓR is

|E(ΓR)| = |R|
2

2
(1− Pr(R)).

Theorem 4.8. [12, Theorem 4.1] Let R1 and R2 be finite rings. Then Pr(R1) = Pr(R2) if
|Z(R1)| = |Z(R2)| and ΓR1

∼= ΓR2
.

We conclude this chapter with the following research problems.

Problem 4.9. Does there exist an n-centralizer finite ring for any positive integer n 6= 2, 3?

Problem 4.10. Can we characterize n-centralizer finite rings for n ≥ 8 (if exists)?

Problem 4.11. If R is a 6-centralizer finite ring such that R
Z(R) is isomorphic to Z2 ×Z2 ×Z4 or

Z2 × Z2 × Z2 × Z2 then determine the values of Pr(R).

Problem 4.12. If R is a 7-centralizer finite ring such that R
Z(R) is isomorphic to Z2 × Z2 × Z6

then determine the value of Pr(R).

Problem 4.13. If R is an n-centralizer finite ring such that n ≥ 8 then determine the values of
Pr(R).

Problem 4.14. Determine the graphs G such that G is isomorphic to ΓR for some finite ring R.
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A survey on the autocommuting
probability of a finite group

Parama Dutta
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Abstract. For many years people have been studying the commuting probability of an algebraic
structure. It is a very important notion in Algebra as it measures how much commutative an
algebraic structures is. Besides it is a tool to characterizing groups and rings. For the past few
decades people have been studying this notion and its generalizations. In this article, we give a
brief survey on a generalization of the commuting probability of a finite group, which is called
autocommuting probability of the group and collect recent results on this probability.

2010 Mathematical Sciences Classification. Primary 20D60, 20P05, 20F28.

Keywords. Automorphism group, Autocommuting probability, Autoisoclinism.

1 Introduction

Let G be a group having a finite number of elements. The commuting probability of G, denoted
by Pr(G), is the probability that a randomly chosen pair of elements of G commute. That is

Pr(G) =
|{(x, y) ∈ G×G : xy = yx}|

|G×G|
.

Clearly, Pr(G) = 1 if and only if G is commutative. In 1968, Erdős and Turán [ETa68] initiated the
study of commuting probability of finite groups. After Erdős and Turán many authors have worked
on Pr(G) and its generalizations, for examples, see [DN10, EL07, RL14, NY15, ND10, PS08]. A
survey on the generalizations of Pr(G) can be found in [DP13]. Sherman [She75] proposed a
new direction to the generalizations of Pr(G). He considered the automorphism group of G and
introduced the probability that an automorphism of a group fixes an random element of the group.
We call this notion as autocommuting probability of a finite group. In this article, we discuss
various results obtained for autocommuting probability including some computing formulae, some
bounds and invariance property. We also give a brief survey on certain characterizations of a group
in terms of autocommuting probability.

11
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2 Autocommuting probability of a finite group

Let a finite group G acts on a set Ω. Sherman [She75], in the year 1975, introduced the probability
(denoted by Pr(Ω,G)) that a randomly chosen element of G fixes a randomly chosen element of Ω.
Note that if Ω = G and G = Aut(G), the automorphism group of G, then Pr(G,Aut(G)) is nothing
but the probability that an automorphism of G fixes a random element of G. Thus

Pr(G,Aut(G)) =
|{(x, α) ∈ G×Aut(G) : α(x) = x}|

|G||Aut(G)|

Pr(G,Aut(G)) is called autocommuting probability of G. Sherman studied this notion for consid-
ering finite abelian groups. He proved that

Pr(G,Aut(G)) =

{
1 if G ∼= Z2

3
4 if G � Z2.

Further, Sherman [She75] proved the following result.

Theorem 2.1. [She75, Proposition 1] If p is a prime and G is an abelian group of order pn then

Pr(G,Aut(G)) ≤ 2

(
3

p2

)n
2

.

The study of autocommuting probability remain neglected for many years until Arora and
Karan [AK17] resume the study. They have computed the values of Pr(G,Aut(G)) for some classes
of groups and characterize G for some values of Pr(G,Aut(G)). Some of their results are as follows.

Theorem 2.2. [AK17, Theorem 5] Let G be a finite abelian group. Then Pr(G,Aut(G)) = 2
p if

and only if

G =

{
Zp, if p is any prime

Z2 × Zp, if p is an odd prime.

Theorem 2.3. [AK17, Proposition 7] Let p be a prime and G be a group of order p2. Then

Pr(G,Aut(G)) =
k

p2
,

where k is either 2 or 3.

Theorem 2.4. [AK17, Proposition 8] Let p be an odd prime and G be a group of order p3. Then

Pr(G,Aut(G)) =
k

p3
,

where k ∈ {2, 3, 4, p+ 2}.

Theorem 2.5. [AK17, Proposition 9] Let p be an odd prime and G be a abelian group of order p4.
Then

Pr(G,Aut(G)) =
k

p4
,

where k ∈ {2, 3, 4, 5, 6}.
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Let [G,Aut(G)] = 〈[x, α] : x ∈ G and α ∈ Aut(G)〉 and L(G) = {x : [x, α] = 1 for all α ∈
Aut(G)} be the auto-commutator subgroup and absolute center of G respectively. Then we have
the following bounds for Pr(G,Aut(G)) in terms of [G,Aut(G)] and L(G)

Theorem 2.6. [RS14, Lemma 2.1] Let G be a finite group. If p is the smallest prime dividing |G|
then

1

|[G,Aut(G)]|

(
|[G,Aut(G)]| − 1

|G : L(G)|
+ 1

)
≤ Pr(G,Aut(G)) ≤ p− 1

p|Aut(G)|
+

1

p
.

A generalization of autocommuting probability of a finite group

The autocommutator of x ∈ G and α ∈ Aut(G) is defined as [x, α] := x−1α(x). Motivated by
[PS08], Dutta and Nath [DN18] initiated the study of g-autocommuting probability of a finite group
G. g-autocommuting probability of G is the probability that the autocommutator of a randomly
chosen pair of elements, one from G and the other from Aut(G), is equal to a given element g ∈ G.
That is

Prg(G,Aut(G)) =
|{(x, α) ∈ G×Aut(G) : [x, α] = g}|

|G||Aut(G)|
.

Clearly, Pr1(G,Aut(G)) = Pr(G,Aut(G)). Hence Pr(G,Aut(G)) generalizes Prg(G,Aut(G)). Dutta
and Nath obtained the following computing formulae for Prg(G,Aut(G)).

Theorem 2.7. [DN18, Theorem 2.3] Let G be a finite group. If g ∈ G then

Prg(G,Aut(G)) =
1

|G||Aut(G)|
∑
x∈G

xg∈orb(x)

|CAut(G)(x)| = 1

|G|
∑
x∈G

xg∈orb(x)

1

| orb(x)|
.

Theorem 2.8. [DN18, Theorem 2.3] Let G and H be two finite groups such that gcd(|G|, |H|) = 1.
If (g, h) ∈ G×H then

Pr(g,h)(G×H,Aut(G×H)) = Prg(G,Aut(G))Prh(H,Aut(H)).

Dutta and Nath also found some bounds for the ratio Prg(G,Aut(G)). Some of their bounds
are as follows.

Theorem 2.9. [DN18, Proposition 3.1] Let G be a finite group. Then

1. If g = 1 then Prg(G,Aut(G)) ≥ |L(G)|
|G| +

|CAut(G)(G)|(|G|−|L(G)|)
|G||Aut(G)| .

2. If g 6= 1 then Prg(G,Aut(G)) ≥ |L(G)||CAut(G)(G)|
|G||Aut(G)| .

Theorem 2.10. [DN18, Proposition 3.2] Let G be a finite group. Then

Prg(G,Aut(G)) ≤ Pr(G,Aut(G)).

The equality holds if and only if g = 1.

Theorem 2.11. [DN18, Proposition 3.3] Let G be a finite group and p the smallest prime dividing
|Aut(G)|. If g 6= 1 then

Prg(G,Aut(G)) ≤ |G| − |L(G)|
p|G|

<
1

p
.
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Moghaddam et al. [ME] have defined autoisoclinism between two groups. Two groups G and
H are said to be autoisoclinic if there exist isomorphisms ψ : G

L(G) →
H

L(H) , β : K(G)→ K(H) and

γ : Aut(G)→ Aut(H) such that the following diagram commutes

G
L(G) ×Aut(G)

ψ×γ−−−−→ H
L(H) ×Aut(H)ya(G,Aut(G))

ya(H,Aut(H))

K(G)
β−−−−→ K(H)

whereK(G) is the set of all autocommutaors ofG and the maps a(G,Aut(G)) : G
L(G)×Aut(G)→ K(G)

and a(H,Aut(H)) : H
L(H) ×Aut(H)→ K(H) are given by

a(G,Aut(G))(xL(G), α1) = [x, α1] and a(H,Aut(H))(yL(H), α2) = [y, α2]

respectively. In this case, the pair (ψ × γ, β) is called an autoisoclinism between the groups G and
H. Dutta and Nath prove the following.

Theorem 2.12. [DN18, Proposition 5.1] Let G and H be two finite groups and (ψ × γ, β) an
autoisoclinism between them. Then

Prg(G,Aut(G)) = Prβ(g)(H,Aut(H)).

3 Relative autocommuting probability of a finite group

Moghaddam et al. [MK11] generalized Pr(G,Aut(G)) considering a subgroup H of G and defined
relative autocommuting probability of a subgroupH ofG denoted by Pr(H,Aut(G)). Pr(H,Aut(G))
is defined as

Pr(H,Aut(G)) =
|{(x, α) ∈ H ×Aut(G) : α(x) = x}|

|H||Aut(G)|
.

They obtained the following bounds.

Theorem 3.1. [MK11, Theorem 2.3] Let H be a subgroup of a finite group G and p be the smallest
prime number dividing |Aut(G)|. Then

|L(G) ∩H|
|H|

+
p(|H| − |L(G) ∩H|)
|H||Aut(G)|

≤ Pr(H,Aut(G)) ≤ 1

p
+
p− 1

p

|L(G) ∩H|
|H|

.

Let CG(α) = {x ∈ G : [x, α] = 1}. Rismanchian and Sepehrizadeh in [RS14] proved the following
result.

Theorem 3.2. [RS14, Theorem 2.3] Let H and K be two subgroups of a finite group G such that
H ⊆ K. Then

Pr(K,Aut(G)) ≤ Pr(H,Aut(G)).

The equality holds if and only if K = HCK(α) for all α ∈ Aut(G).

The following characterization for H in terms of Pr(H,Aut(G)) is obtained by Moghaddam et
al. [MK11].
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Theorem 3.3. [MK11, Theorem 2.4] Let H be a subgroup of a finite group G and Pr(H,Aut(G))
= 3

4 . Then
H

L(G) ∩H
∼= Z2.

A generalization of relative autocommuting probability of a finite group

Dutta and Nath further generalized the notion of Prg(G,Aut(G)) in [DN]. They define

Prg(H,Aut(K)) :=
|{(x, α) ∈ H ×Aut(K) : [x, α] = g}|

|H||Aut(K)|

where g ∈ K. That is, Prg(H,Aut(K)) is the probability that the autocommutator of a randomly
chosen pair of elements, one from H and the other from Aut(K), is equal to a given element g ∈ K.
The ratio Prg(H,Aut(K)) is called generalized g-autocommuting probability of G relative to its
subgroups H and K. They have obtained the following computing formula for Prg(H,Aut(K)).

Theorem 3.4. [DN, Theorem 3.2] Let H and K be two subgroups of a finite group G such that
H ⊆ K. If g ∈ K then

Prg(H,Aut(K)) =
1

|H||Aut(K)|
∑
x∈H

xg∈orbK(x)

|CAut(K)(x)|

=
1

|H|
∑
x∈H

xg∈orbK(x)

1

| orbK(x)|
.

They also obtained some bounds for the ratio considering g = 1. Some of the bounds are as
follows.

Theorem 3.5. [DN, Theorem 3.10] Let H and K be two subgroups of a finite group G such that
H ⊆ K and p the smallest prime dividing |Aut(K)|. Then

Pr(H,Aut(K)) ≥ |L(H,Aut(K))|
|H|

+
p(|H| − |XH | − |L(H,Aut(K))|) + |XH |

|H||Aut(K)|

and

Pr(H,Aut(K)) ≤ (p− 1)|L(H,Aut(K))|+ |H|
p|H|

− |XH |(|Aut(K)| − p)
p|H||Aut(K)|

,

where L(H,Aut(K)) = {x ∈ H : [x, α] = 1 for all α ∈ Aut(K)} and XH = {x ∈ H : CAut(K)(x) =
{I}}.

Theorem 3.6. [DN, Theorem 3.14] Let H and K be two subgroups of a finite group G such that
H ⊆ K. Then

Pr(H,Aut(K)) ≥ 1

|S(H,Aut(K))|

(
1 +
|S(H,Aut(K))| − 1

|H : L(H,Aut(K))|

)
where S(H,Aut(K)) = {[x, α] : x ∈ H and α ∈ Aut(K)}. The equality holds if and only if
orbK(x) = xS(H,Aut(K)) for all x ∈ H \ L(H,Aut(K)).
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Theorem 3.7. [DN, Corollary 3.15] Let H and K be two subgroups of a finite group G such that
H ⊆ K. Then

Pr(H,Aut(K)) ≥ 1

|[H,Aut(K)]|

(
1 +

|[H,Aut(K)]| − 1

|H : L(H,Aut(K))|

)
where S(H,Aut(K)) = {[x, α] : x ∈ H and α ∈ Aut(K)}. If H 6= L(H,Aut(K)) then the equality
holds if and only if [H,Aut(K)] = S(H,Aut(K)) and orbK(x) = x[H,Aut(K)] for all x ∈ H \
L(H,Aut(K)).

Using these bounds, they further characterize H in terms of Pr(H,Aut(K)).

Theorem 3.8. [DN, Theorem 3.11] Let H ⊆ K be two subgroups of a finite group G.

1. If p and q are the smallest primes dividing |Aut(K)| and |H| respectively then

Pr(H,Aut(K)) ≤ p+ q − 1

pq
.

In particular, if p = q then

Pr(H,Aut(K)) ≤ 2p− 1

p2
≤ 3

4
.

2. If Pr(H,Aut(K)) = p+q−1
pq , for some primes p and q, then pq divides |H||Aut(K)|. Further,

if p and q are the smallest primes dividing |Aut(K)| and |H| respectively, then

H

L(H,Aut(K))
∼= Zq.

In particular, if H and Aut(K) are of even order and Pr(H,Aut(K)) = 3
4 then

H

L(H,Aut(K))
∼= Z2.

Theorem 3.9. [DN, Theorem 3.12] Let H ⊆ K be two subgroups of a finite group G.

1. If p, q are the smallest primes dividing |Aut(K)| and |H| respectively and H is non-abelian
then

Pr(H,Aut(K)) ≤ q2 + p− 1

pq2
.

In particular, if p = q then

Pr(H,Aut(K)) ≤ p2 + p− 1

p3
≤ 5

8
.

2. If H is non-abelian and Pr(H,Aut(K)) = q2+p−1
pq2 , for some primes p and q, then pq di-

vides |H||Aut(K)|. Further, if p and q are the smallest primes dividing |Aut(K)| and |H|
respectively then

H

L(H,Aut(K))
∼= Zq × Zq.

In particular, if H and Aut(K) are of even order and Pr(H,Aut(K)) = 5
8 then

H

L(H,Aut(K))
∼= Z2 × Z2.
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Abstract. In this chapter, we shall highlight the outcomes of a survey on clean rings. Results
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1 INTRODUCTION

Throughout our discussion, unless or otherwise explicitly stated, R will denote an associative
ring with unity. We will use the symbols vnr(R),Nil(R),U(R) and Idem(R) respectively to denote
the set of all von Neumann regular elements, nilpotent elements, units and idempotents of R. Also
J(R) will denote the Jacobson radical ofR. LetM be a leftR module. We denote the endomorphism
ring of M by end(M) and denote the ring of n × n matrices over the ring R by Mn(R). A ring
R is a ?-ring (or ring with involution) if there exists an operation ? : R → R such that for all
x, y ∈ R, (x+ y)? = x? + y?, (xy)? = y?x? and (x?)? = x. An element p of a ?-ring is a projection
if p2 = p = p?. Obviously, 0 and 1 are projections of any ?-ring. Henceforth P (R) will denote
the set of all projections in a ?-ring. A ring R is said to have stable range one if for any a, b ∈ R
with aR + bR = R there exists y ∈ R such that a + by ∈ U(R). In 1936, von Neumann defined
that an element a ∈ R is regular or von Neumann regular if a = aba for some b ∈ R. Similarly an
element a ∈ R is called unit regular if a = aua for some u ∈ U(R) or equivalently a = eu for some
e ∈ Idem(R) and u ∈ U(R). In 1939, McCoy [McC39], generalized von Neumann regular rings to
π-regular rings. A ring is said to be π-regular, if for each element a ∈ R, some positive integral
power of a is von Neumann regular. That is, for each a ∈ R there exist an element x ∈ R and
a positive integer n such that an = anxan. An element a ∈ R is said to be strongly π-regular if
there exist an element x and a positive integer n such that an = an+1x (Azumaya [Azu54], called
such an element right π-regular and similarly he defined left π-regular, further he called an element
strongly π-regular if it is both left and right π-regular). Later on F. Dischinger showed that this
definition is right and left symmetric. A ring R is strongly π-regular if all its elements are so. In
1977, W.K. Nicholson [Nic77], introduced the notion of clean element, which is an element that
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can be expressed as a sum of an idempotent and a unit. Clearly, the concept of clean element is
an additive analogue of unit regular element. A ring is called a clean ring if each of its element
is clean. A ring R is called strongly clean if every a ∈ R can be expressed as a = e + u, where
e ∈ Idem(R) and u ∈ U(R) with eu = ue. A.J. Diesl [Die06], in his Ph.D. thesis introduced the
concept of nil clean rings, which is a ring in which every element of R can be expressed as a sum of
an idempotent and a nilpotent element of R. It is easy to see that a nil clean ring is always a clean
ring and of course the converse is not true. In 2006, M.S. Ahn and D.D. Anderson [AA06], defined
the concept of weakly clean ring and almost clean ring. They defined that a ring R is weakly clean
ring if for every x ∈ R, either x = e + u or x = −e + u, where e ∈ Idem(R) and u ∈ U(R). Also
they defined that a ring R to be almost clean ring if each x ∈ R can be written as x = r+ e, where
r ∈ vnr(R) and e ∈ Idem(R). In 2002, H. Chen and M. Chen [CC03], defined the notion of clean
ideals of a ring. An ideal I of a ring R is called clean ideal if every element of I is clean element of
R. We mention some open questions given below:

1. Whether every nil clean element of a ring is clean?

2. If R is strongly nil clean and e ∈ R is an idempotent, is the Peirce corner eRe strongly nil
clean?

3. Does every strongly nil clean ring have stable range one?

2 Some works related to clean ring and its subclass

In this section, we mention some results related to clean rings and its subclass. Nil clean rings forms
a subclass of clean rings and clean rings forms a subclass of almost clean rings. Here we mainly
survey on nil clean rings, clean rings and almost clean rings.

• In 1977, W.K. Nicholson [Nic77] defined the concept of clean ring as a subclass of exchange
ring. An element x of a ring R is said to be clean element if x = u+ e, where u ∈ U(R) and
e ∈ Idem(R). Ring R is said to be clean ring if all the elements of R are clean element. W.
K. Nicholson also defined the notion of suitable ring. A ring R is called suitable if for each
x ∈ R, there exists e ∈ Idem(R) such that e− x ∈ R(x− x2). The connection between clean
ring and suitable ring is given below:

Proposition 2.1. Every clean ring is suitable.

Converse is not true by Bergman’s example [LYZ08].

Proposition 2.2. A ring with central idempotent is clean if and only if it is suitable.

Definition 2.3. A ring R is said to be potent if idempotents can be lifted modulo J(R) and
every left ideal not contained in J(R) contains a non zero idempotent.

Definition 2.4. Idempotents can be lifted modulo a one sided ideal I of a ring R if, for any
x ∈ R with x− x2 ∈ I, there exists an idempotent e ∈ R such that e− x ∈ I.

Some results related to suitable rings are given below:

Theorem 2.5. If R is suitable and e2 = e ∈ R the ring eRe is suitable.
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Proposition 2.6. A ring is suitable if and only if idempotents can be lifted modulo every left
ideal.

• A. J. Diesl [Die13] studied a new class of clean rings called nil clean ring in the year 2013. A
ring R is called nil clean ring if for any x ∈ R, x = n+ e, where n ∈ Nil(R) and e ∈ Idem(R),
if ne = en in the nil clean expression of x, then the ring is said to be strongly nil clean
ring. He characterized strongly nil clean elements of End(MR), where End(MR) is the ring
of endomorphisms of a R-module M , as follows:

Proposition 2.7. Let R be a ring, and let MR be a right R−module. An element f ∈
End(MR) is strongly nil clean if and only if there exists a direct sum decomposition M =
A ⊕ B such that A and B are f -invariant and such that f |A ∈ End(A) is nilpotent and
(1− f)|B ∈ End(B) is nilpotent.

A. J. Diesl also characterized a commutative nil clean ring in terms of boolean ring.

Theorem 2.8. Let, R be a commutative ring. Then R is nil clean if and only if R/J(R) is
boolean and J(R) is nil.

Theorem 2.9. Let R be a ring and I be an nilpotent ideal of R. Let R̄ = R/I. If a is an
element of R such that ā is strongly nil clean in R̄, then a is strongly nil clean element in R.

• H. Chen [Che11] characterized the strongly nil cleanness of 2 × 2 matrices over local rings.
For commutative local rings, he characterized strongly nil cleanness in terms of solvability of
quadratic equations. Some of their results are given below:

Theorem 2.10. Let R be a local ring. Then A ∈ M2(R) is strongly nil clean if and only if

A is nilpotent or I2−A is nilpotent or A is similar to a matrix

(
λ 0
0 µ

)
, where λ ∈ Nil(R)

and µ ∈ 1 + Nil(R).

Theorem 2.11. Let R be a commutative local ring. Then the following are equivalent.

(1) A ∈M2(R) is strongly nil clean.

(2) A is nilpotent or I2−A is nilpotent or the equation x2− tr(A).x+ det(A) = 0 has a root
in Nil(R) and a root in 1 + Nil(R).

Let R be a local ring and T (R) = {

 a11 0 0
a21 a22 a23

0 0 a33

 , | a11, a21, a22, a23 ∈ R}, then T (R)

is a 3× 3 subring of M3(R) under usual addition and multiplication. In fact, T (R) possesses
the similar form of both the ring of all lower triangular matrices and the ring of all upper
triangular matrices.

Theorem 2.12. Let R be a local ring. Then A ∈ T (R) is strongly nil clean if and only if
each Aii ∈ Nil(R) or 1 + Nil(R).

• In 2013, H. Chen [Che13] characterized the strongly nil cleanness of matrices over projective-
free rings in terms of the factorizations of their characteristic polynomials. Some of their
results are the following:
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Theorem 2.13. Let E = end(RM) and let α ∈ E, then the following statements are equiva-
lent.

(1) α ∈ E is strongly nil clean;

(2) There exists π2 = π ∈ E such that πα = απ, απ ∈ Nil(πEπ) and (1 − α)(1 − π) ∈
Nil((1− π)E(1− π));

(3) M = P ⊕ Q, where P and Q are α-invariant and α|P ∈ Nil(end(P )) and (1 − α)|Q ∈
Nil(end(Q)).

(4) M = P1⊕P2⊕ · · · ⊕Pn for some n ≥ 1, where Pi is α-invariant and α|Pi is strongly nil
clean in end(Pi), for each i.

Definition 2.14. For r ∈ R, define

Pr = {f ∈ R[t] | f ismonic, and f − (t− r)deg(f) ∈ Nil(R)[t]}

Theorem 2.15. Let R be a commutative ring, let φ ∈ Mn(R) and let h ∈ R[t] be a monic
polynomial of degree n. If h(φ) = 0 and there exists a factorization h = h0h1 such that
h0 ∈ P0 and h1 ∈ P1, then φ is strongly nil clean.

An R module M is called free if it has a basis. Also an R module P is a projective module if
there exists an R module Q such that P ⊕Q is a free R module.

Theorem 2.16. Let R be a projective-free ring, and let h ∈ R[t] be a monic polynomial of
degree n. Then the following are equivalent:

(1) Every φ ∈Mn(R) with χ(φ) = h is strongly nil clean.

(2) There exists φ ∈Mn(R) with χ(φ) = h is strongly nil clean.

(3) There exists a factorization h = h0h1 such that h0 ∈ P0 and h1 ∈ P1.

As a corollary, we have the following result.

Corollary 2.17. Let R be a projective-free ring and let φ ∈ Mn(R). Then the following are
equivalent:

(1) φ is strongly nil clean.

(2) φ is similar to

(
φ0

φ1

)
, where φ0 ∈ Mr(R) and In−r − φ1 ∈ Mn−r(R) (0 ≤ r ≤ n)

are nilpotent.

Example 2.18. Let Z4 = {0̄, 1̄, 2̄, 3̄} and let A =


3̄ 3̄ 0̄ 0̄
0̄ 0̄ 0̄ 0̄
0̄ 0̄ 3̄ 3̄
0̄ 0̄ 0̄ 3̄

 ∈M4(Z4). Obviously Z4

is commutative local ring with Nil(Z4) = {0̄, 2̄} is nil. Hence Z4 is projective-free.
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• In the year 2006, M.S. Ahn and D.D. Anderson [AO08] introduced weakly clean rings and
almost clean rings. A ring R is weakly clean for a ∈ R, there exist some e ∈ Idem(R) and
u ∈ U(R), such that if a = u + e or u − e. For any subset S of a ring R, R is said to be
S-weakly clean ring if for any x ∈ R, x = u + e or x = u − e, where u ∈ U(R) and e ∈ S.
They proved that if R is weakly clean but not clean and Idem(R) = {0, 1} then R has exactly
two maximal ideals and 2 ∈ U(R). A ring R is called almost clean ring if for any x ∈ R,
x = r + e, where r ∈ vnr(R) and e ∈ Idem(R). Clearly every clean ring is almost clean but
an integral domain, which is always almost clean, is clean if and only if it is quasilocal. They
also determined the indecomposable almost clean rings. Some results of weakly clean ring
and almost clean ring are given bellow:

Lemma 2.19. (1) If R is weakly clean or {0, 1}-weakly clean, then so is every homomorphic
image of R.

(2) If R is {0, 1}-weakly clean, then R has at most two maximal ideals.

(3) Let K1 and K2 be fields. Then K1×K2 is {0, 1}-weakly clean if and only if both K1 and
K2 have characteristics not equal to 2.

Theorem 2.20. A ring R is {0, 1}-weakly clean if and only if either

(1) R is quasilocal, or

(2) R has exactly two maximal ideals and 2 ∈ U(R).

A direct product
∏
Rα of rings is clean if and only if each Rα is clean. M.S. Ahn and D.D.

Anderson [AO08], determined when
∏
Rα is weakly clean.

Theorem 2.21. Let {Rα} be a collection of commutative rings. Then the direct product
R =

∏
Rα is weakly clean if and only if each Rα is weakly clean ring and at most one Rα is

not clean.

Theorem 2.22. Suppose that the commutative ring R is a finite direct product of indecom-
posable rings, e.g., R is Noetherian. Then the following conditions are equivalent:

(1) R is almost clean.

(2) For prime ideals P,Q ⊂ Z(R) with P + Q = R, then there exists an idempotent e with
e ∈ P and 1− e ∈ Q.

Theorem 2.23. A commutative ring R satisfies R = vnr(R) ∪ Idem(R) ∪ − Idem(R) if and
only if R is isomorphic to one of the following:

(1) a domain,

(2) a Boolean ring,

(3) Z3 ×B, where B is a boolean ring, or

(4) Z3 × Z3.

• In [AN13], N. Ashrafi and E. Nasibi studied more about almost clean rings, they renamed
almost clean ring by r-clean ring. They proved that the concepts of clean ring and almost
clean ring are equivalent for abelian rings. So as a corollary we see that if 0 and 1 are the
only idempotents in R, then an almost clean ring is an exchange ring.
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Theorem 2.24. Let R be an abelian ring. Then R is almost clean if and only if R is clean.

Proposition 2.25. Let R be an abelian ring and α be an endomorphism of R. Then the
following are equivalent.

1. R is r-clean ring.

2. The formal power series ring R[[x]] over R is r-clean.

3. The skew power series ring R[[x;α]] over R is r-clean.

Theorem 2.26. Let I be a regular ideal of a ring R and suppose that idempotents can be
lifted modulo I. Then R is r-clean if and only if R/I is r-clean.

Theorem 2.27. Let A and B be rings, M =B MA, a bimodule and assume that one of the
following holds:

1. A and B are clean.

2. one of the rings A and B is clean and the other one is r-clean.

Then the formal triangular matrix ring T =

(
A 0
M B

)
is r-clean.

• In 2003, H. Chen and M. Chen [CC03], introduced clean ideal of a ring which is a natural
generalization of clean rings. An ideal I of a ring R is called clean ideal if every element of
I is clean element. They proved that every matrix ideal over a clean ideal of a ring is clean.
Also every ideal having stable range one of a regular ring is clean ideal.

Definition 2.28. An ideal I of a ring R is said to be an exchange ideal if for any x ∈ I,
there exists an idempotent e ∈ I such that e− x ∈ R(x− x2).

Some of their result about clean ideal is given below:

Theorem 2.29. Let R be a unital ring and I an ideal in which every idempotent is central.
Then the following are equivalent.

(1) I is a clean ideal.

(2) I is an exchange ideal.

A finite orthogonal set of idempotents e1, e2, · · · , en in a ring R is said to be complete if
e1 + e2 + · · ·+ en = 1 ∈ R.

Proposition 2.30. Let R be a unital ring and I an ideal of R. Then the following are
equivalent:

(1) I is clean ideal of R.

(2) there exists a complete set {e1, e2, · · · , en} of idempotents such that eiIei is a clean ideal
of eiRei for all i.
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Abstract. Peter V. Dancheva and W. Wm. McGovernb (see [3]) introduce the concept of a weak
nil clean ring, a generalisation of nil clean ring, which is nothing but a ring with unity in which
every element can be expressed as sum or difference of a nilpotent and an idempotent. Further if
the idempotent and nilpotent commute the ring is called weak* nil clean. We characterize all n ∈ N,
for which Zn is weak nil clean but not nil clean. Also we discuss S-weak nil clean rings and their
properties, where S is a set of idempotents and show that if S = {0, 1}, then an S-weak nil clean
ring contains a unique maximal ideal. Finally we show that weak* nil clean rings are exchange
rings and strongly nil clean rings provided 2 ∈ R is nilpotent in the latter case.
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1 Introduction

Rings R are associative rings with unity unless otherwise indicated and modules are unitary. The
Jacobson radical, group of units, set of idempotents and set of nilpotent elements of a ring R are
denoted by J(R),U(R), Idem(R) and Nil(R) respectively. In the paper “Lifting idempotents and
exchange rings”[4] Nicholson called an element r in a ring R clean element, if r = e + u for some
e ∈ Idem(R) and u ∈ U(R), and a ring is clean if every element of the ring is a clean element.
Similarly a nil clean ring was introduced by Diesel [1] in his doctoral thesis and defined an element
r in a ring R to be nil clean if r = e + n for e ∈ Idem(R) and n ∈ Nil(R). A ring R is nil clean if
each element of R is nil clean.

In the year 2006, Ahn and Andreson defined a ring R to be weakly clean if each element r ∈ R
can be written as r = u + e or r = u − e for some u ∈ U(R) and e ∈ Idem(R) [5]. Motivated
by this concept, we observe the example Z6 = {0, 1, 2, 3, 4, 5}, here Idem(Z6) = {0, 1, 3, 4}
and Nil(Z6) = {0}. So clearly Z6 is not a nil clean ring as 2 and 5 can not be written as sum of
an idempotent and a nilpotent of Z6. But we see that every elements r ∈ Z6 can be written as
r = n− e or r = n+ e for e ∈ Idem(Z6) and n ∈ Nil(Z6), which led us to introduce weak nil clean

27
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ring. Weak nil clean ring a ring with unity in which each element of the ring can be expressed as
sum or difference of a nilpotent and an idempotent.

A study on commutative weak nil clean rings have been done by Peter V. Dancheva and W.
Wm. McGovernb (see [3]). Here we have given stronger version of few of its results along with some
new results. We have also characterized all natural numbers n, for which Zn is a weak nil clean ring
but not nil clean ring. Further we have discussed S-weak nil clean ring, a ring in which each element
can be expressed as sum or difference of a nilpotent and an element of S, where S ⊆ Idem(R) and
have shown that if S = {0, 1}, then a S-weak nil clean ring contains a unique maximal ideal. Finally
we have shown that weak* nil clean rings (Definition ??) are exchange rings and strongly nil clean
rings provided 2 ∈ R is nilpotent in the later case. We have ended the chapter by introducing weak
J-clean rings and obtain few results on weak J-clean rings as an effort to answer Problem 5 of [3].

2 WEAK NIL CLEAN RING

Definition 2.1. An element r ∈ R is said to weak nil clean element of the ring R, if r = n−e or r =
n− e, for some n ∈ Nil(R) and e ∈ Idem(R) and a ring is said to be weak nil clean ring if each of
its elements is weak nil clean. Further if r = n − e or n + e with ne = en, then r is called weak*
nil clean.

Obviously every nil clean ring is weak nil clean, but the above example denies the converse.
Also if R is a weak nil clean ring or a weak* nil clean ring then for n ≥ 2, S = {A ∈ Tn(R) : a11 =
a22 = · · · = ann}, is weak nil clean ring which is not weak* nil clean, where Tn(R) is the ring of
upper triangular matrices over R. Analogue to the concept of clean and nil clean rings, it is easy
to see that every weak nil clean ring is weakly clean and the converse is not true.

Theorem 2.2. Homomorphic image of a weak nil clean ring is weak nil clean.

However the converse is not true as Z6
∼= Z/〈6〉 is a weak nil clean ring, but Z is not a weak nil

clean ring. A finite direct product
∏
Rα of rings is nil clean if and only if each Rα is nil clean. our

next observe next result is on finite direct product of weak nil clean rings.

Theorem 2.3. Let {Rα} be a finite collection of rings. Then the direct product R =
∏
Rα is weak

nil clean if and only if each Rα is weak nil clean and at most one Rα is not nil clean.

Proof. (⇒) Let R be weak nil clean, then each Rα being homomorphic image of R is weak nil
clean. Suppose for some α1 and α2, α1 6= α2, Rα1 and Rα2 are not nil clean. Since Rα1 is not nil
clean, not all elements x ∈ Rα1 are of the form n− e, where n ∈ Nil(Rα1) and e ∈ Idem(Rα1). But
Rα1

is weak nil clean, so there exists xα1
∈ Rα1

, with xα1
= nα1

+ eα1
, where eα1

∈ Idem(Rα1
) and

nα1
∈ Nil(Rα1

), but xα1
6= n − e for any n ∈ Nil(Rα1

) and e ∈ Idem(Rα1
). Likewise there exists

xα2
∈ Rα2

, with xα2
= nα2

− eα2
, where eα2

∈ Idem(Rα2
) and nα2

∈ Nil(Rα2
), but xα2

6= n+ e for
any n ∈ Nil(Rα2) and e ∈ Idem(Rα2).

Define x = (xα) ∈ R by xα = xαi if α ∈ {α1, α2}
= 0 if α /∈ {α1, α2}

Then clearly x 6= n± e for any n ∈ Nil(R) and e ∈ Idem(R), hence at most one Rα is not nil clean.
(⇐) If each Rα is nil clean, then R =

∏
Rα is nil clean, so weak nil clean. So assume some Rα0

is
weak nil clean but not nil clean and that all other Rα’s are nil clean. Let x = (xα) ∈ R. In Rα0
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we can write xα0 = nα0 + eα0 or xα0 = nα0 − eα0 , where nα0 ∈ Nil(Rα0), eα0 ∈ Idem(Rα0). If
xα0 = nα0 + eα0 , for α 6= α0, let xα = nα + eα and if xα0 = nα0 − eα0 , for α 6= α0, let xα = nα− eα
then n = (nα) ∈ Nil(R) and e = (eα) ∈ Idem(R) and x = n+ e or x = n− e respectively, hence R
is weak nil clean. �

Proposition 2.4. Let R be a weak nil clean ring, then J(R) ⊆ Nil(R).

P roof. Let x ∈ J(R). Then x = n−e or x = n+e, where n ∈ Nil(R) and e ∈ Idem(R). If x = n−e
then there exists a k ∈ N such that (x+ e)k = 0, which gives e ∈ J(R)∩ Idem(R), hence e = 0 i.e.,
x = n ∈ Nil(R). Similarly for x = n+ e, we get x = n ∈ Nil(R). Thus J(R) ⊆ Nil(R). �

Proposition 2.5. Let R be a commutative ring. Then R is weak nil clean if and only if R/J(R)
is Boolean

Proposition 2.6. If a commutative ring R is weak nil clean, R/Nil(R) is weak nil clean and
converse holds if idempotents can be lifted modulo Nil(R).

P roof. (⇒) Follows from Theorem (2.2).
(⇐) Let x ∈ R. Since R/Nil(R) is weak nil clean, so x + Nil(R) = y + Nil(R) or (−y) + Nil(R),
where y2−y ∈ Nil(R) ( as R/Nil(R) is a reduced ring). Since idempotents of R lift modulo Nil(R),
so there exist e ∈ Idem(R) such that y− e ∈ Nil(R), which implies x− e ∈ Nil(R) or x+ e ∈ Nil(R)
i.e., x− e = n or x+ e = m for some m,n ∈ Nil(R), which proves the result. �

For more examples of weak nil clean rings, we consider the method of idealization. Let R be a
commutative ring and M a left R−module. The idealization of R and M is the ring R(M) = R⊕M
with product defined as (r,m)(r′,m′) = (rr′, rm′+r′m) and sum as (r,m)(r′,m′) = (r+r′,m+m′),
for (r,m), (r′,m′) ∈ R(M).

Theorem 2.7. Let R be a ring and M be a left R-module. Then R is weak nil clean if and only if
R(M) is weak nil clean.

Proof. (⇐) Note that R ≈ R(M)/(0 ⊕M) is homomorphic image of R(M). Hence by Theorem
(2.2), R is weak nil clean ring.
(⇒) Let R be weak nil clean ring and (r,m) ∈ R ⊕ M, where r ∈ R and m ∈ M, we have
r = n+ e or n− e for n ∈ Nil(R) and e ∈ Idem(R)
(r,m) = (n+ e,m) or (n− e,m) = (n,m) + (e, 0) or (n,m)− (e, 0) is weak nil clean expression of
(r,m), where (n,m) ∈ Nil(R) and (e, 0) ∈ Idem(R), hence R(M) = R⊕M is weak nil clean. �

Now we try to characterize all n for which Zn is weak nil clean but not nil clean. We recall that,
Idem (Zpk) = {0, 1}, for any prime p ∈ N and k ∈ N.

Lemma 2.8. Z3k , k ∈ N is weak nil clean but not nil clean.

Proof . The proof follows from the fact that Idem (Z3k) = {0, 1} and Nil (Z3k) = {0, 3, 6, ..., 3(3k−1−
1)}.

Lemma 2.9. Zpk , k ∈ N is weak nil clean but not nil clean, where p is prime iff p = 3.
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Proof . (⇐) It follows from Lemma 2.8
(⇒) We know that Z2k is nil clean ∀k ∈ N and Z3k is weak nil clean ∀k ∈ N but not nil clean. Now
consider p > 3, then we have Idem (Zpk) = {0, 1} and Nil (Zpk) = {0, p, 2p, . . . , (pk−1 − 1)p}. So if
we consider the sum or difference of nilpotents and idempotents of Zpk respectively, then at most
4pk−1 elements can be obtained, but p > 4, so pk > 4pk−1. Hence all elements of Zpk can not be
written as sum or difference of nilpotent and idempotent of Zpk respectively. So p = 3. �

Theorem 2.10. The only n for which Zn is weak nil clean but not nil clean is of the form either
3k or 2r3t, where k, r, t ∈ N.

Proof. We have already seen that Z3k is weak nil clean but not nil clean. Next let n = pα1
1 pα2

2 · · · p
αk
k

with αi ∈ N, 1 ≤ i ≤ k and pi’s are distinct primes such that p1 ≤ p2 ≤ ... ≤ pn. If k > 2, then
there exists some i with 1 ≤ i ≤ k such that pi > 3. Then Zpαii is not weak nil clean. Hence Zn
can not be weak nil clean as Zn = Zpα1

1
⊕ Zpα2

2
⊕ · · · ⊕ Zpαkk . So k ≤ 2 and pi ≤ 3 i.e., n = pα1

1 pα2
2 .

If k = 1, then p1 must be 3 as Z2k is nil clean. Again if k = 2, then since pi’s are distinct so
p1 = 2 and p2 = 3. Also if n = 2α13α2 , then Zn = Z2α1 ⊕ Z3α2 . Since Z2α1 is nil clean and Z3α2 is
weak nil clean but not nil clean, so Zn is weak nil clean but not nil clean. This completes the proof.�

The polynomial ring R[x] over a weak nil clean ring is not necessarily weak nil clean. In fact if
R is commutative the R[x] is never weak nil clean. For then x ∈ R[x] is of the form

∑
i aix

i − e or∑
i aix

i + e, where ai ∈ Nil(R), e ∈ Idem(R), giving a0 − e = 0 or a0 + e = 0, which is absurd.

However if R is weak nil clean and σ : R → R is a ring endomorphism then for any n, the quo-
tient S = R[x;σ]/ < xn >, where R[x;σ] is the Hilbert twist, is a weak nil clean ring. Indeed if
f = a0+a1x+a2x

2+...+an−1x
n−1 ∈ S and a0 = n+e or a0 = n−e, where n ∈ Nil(R), e ∈ Idem(R),

then f = (f − e) + e or f = (f + e)− e is a weak nil clean decomposition of f in S.

In order to show that, weak* nil cleanness penetrate to corner, we need following lemmas.

Lemma 2.11. Let R be a ring and x = n + e or n − e be a weak* decomposition of x ∈ R with
n ∈ Nil(R) and e ∈ Idem(R), then annl(a) ⊆ annl(e) and annr(a) ⊆ annr(e).

P roof. Let r ∈ annl(x) then rx = 0. If x = e + n then rn + re = 0, and so rne + re = 0 i.e.,
re(n+ 1) = 0 implying re = 0 and thus r ∈ annl(e).
Again if x = n − e, then rn − re = 0 and so rne − re = 0 i.e., re(n − 1) = 0 implying re = 0 and
thus r ∈ annl(e). Hence annl(a) ⊆ annl(e). Similarly the other part i.e. annr(a) ⊆ annr(e). �

Lemma 2.12. Let R be a ring and x = n + e or n − e be a weak* decomposition of x ∈ R with
n ∈ Nil(R) and e ∈ Idem(R), then annl(a) ⊆ R(1− e) and annr(a) ⊆ (1− e)R.

Proof . Let r ∈ annl(x) then by above Lemma 2.11 we have r ∈ annl(e) i.e. re = 0, So r =
r(1− e) ∈ R(1− e) and hence annl(a) ⊆ R(1− e). Similarly we have annr(a) ⊆ (1− e)R. �

Theorem 2.13. Let R be a ring and f ∈ Idem(R), then x ∈ fRf is weak* nil clean in R if and
only if x is weak* nil clean in fRf.

Proof.(⇐) If x ∈ fRf is weak* nil clean in fRf , then by the same weak* nil clean decomposition,
x is weak* nil clean in R.
(⇒) Let x is weak* nil clean in R, so x = n+ e or n− e for some n ∈ Nil(R) and e ∈ Idem(R) with
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ne = en. First let x = n+ e, since x ∈ fRf, so (1− f) ∈ annl(x)∩ annr(x) ⊆ R(1− e)∩ (1− e)R =
(1 − e)R(1 − e) [ by Lemma 2.12]. So we have (1 − f)e = 0 = e(1 − f) giving fe = e = ef , and
consequently fef ∈ Idem(fRf). Also xf = fx, therefore we have nf = fn, i.e. fnf ∈ Nil(fRf).
Hence x = fnf+fef . Similarly if x = n−e then x = fnf−fef. Hence x is weak* nil clean in fRf .�

The following is an immediate consequence of this result.

Corollary 2.14. Let R is weak* nil clean ring e ∈ Idem(R), then the corner ring eRe is also weak*
nil clean.

3 S-WEAK NIL CLEAN RING

S-weak nil clean ring is a generaliztion of weak nil clean rings which is defined as follows:

Definition 3.1. let S be a nonempty set of idempotents of R, then R is called S−weak nil clean
if each r ∈ R can be written as r = n+ e or n− e, where n ∈ Nil(R) and e ∈ S.

Proposition 3.2. Let R is {0, 1}-weak nil clean ring, then R has exactly one maximal ideal.

Proof . Let R be {0, 1}-weak nil clean ring. Then R = U(R)
⋃

Nil(R) and U(R) = (1 +
Nil(R))

⋃
(−1 + Nil(R)). It follows that for any x ∈ Nil(R) and any r ∈ R, xr, rx ∈ Nil(R).

Next if possible let n1 − n2 = u, where n1, n2 ∈ Nil(R) and u ∈ U(R). Then u−1n1 − u−1n2 = 1
i.e., n3 = 1 + n4, where u−1n1 = n3 ∈ Nil(R) and u−1n2 = n4 ∈ Nil (R), which is a contradiction
as n3 ∈ Nil(R). Thus n1−n2 ∈ Nil(R), for any n1, n2 ∈ Nil(R) implying that Nil(R) is an ideal.�

From above theorem it is clear that {0, 1}− nil clean rings are local rings. Converse is not true.

Theorem 3.3. If a ring R is S-weak* nil clean for S ⊆ Idem(R) then S = Idem(R).

Proof. Let e′ ∈ Idem(R), then −e′ ∈ R. Since R is S-weak* nil clean, so −e′ = n+e or −e′ = n−e
for some n ∈ Nil(R), and e ∈ S, with ne = en. If −e′ = n + e, then 1 − e′ = 1 + n + e i.e.,
(1+n+e)2 = 1+n+e, which gives 1+n2 +e+2n+2e+2ne = 1+n+e i.e., n2 +n+2e(1+n) = 0,
implies (n+ 2e)(1 + n) = 0. But 1 + n ∈ U(R) , so n = −2e, giving −e′ = n+ e = −2e+ e = −e.
Thus e′ = e ∈ S.
Again if −e′ = n−e, then (−e′)2 = e′

2
= e′ i.e., (n−e)2 = −n+e, which gives n2−2ne+e = −n+e

i.e., n2 + n(1 − 2e) = 0, implies n{n + (1 − 2e)} = 0. But n + (1 − 2e) ∈ U(R) , so n = 0. So
e′ = e ∈ S. Hence Idem(R) = S. �

But in case of weak clean ring it is possible that R is S−weak clean and S ( Idem(R).

4 MORE RESULTS ON WEAK NIL CLEAN RING

It is well known that Z3 is clean, so upper triangular matrix ring T2(Z3) is clean and hence exchange,
but T2(Z3) is not weak nil clean ring, so in general, exchange ring are not weak nil clean ring. But
one can see that weak* nil clean rings are exchange.

Theorem 4.1. Let R be a weak* nil clean ring, then R is a exchange ring.
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Proof. Let R be a weak* nil clean ring and x ∈ R, then x = n + e or x = n − e, where n ∈
Nil(R) and e ∈ Idem(R).
If x = n− e, then

(1− n)[x− (1− n)−1e(1− n)] = (1− n)[(n− e)− (1− n)−1e(1− n)],

= n− e− n2 + ne− e− en,
= x− (n− e)2 = x− x2,

implies [x− (1− n)−1e(1− n)] = (1− n)−1(x− x2).

Similarly if x = n+ e, we have x− e = u−1(x2−x) for u = (2e− 1) +n ∈ U(R). Then by condition
(1) of Proposition 1.1 of [4], R is exchange. �

Finally we take the question “ under what condition a weak* nil clean ring is strongly nil clean
ring?” To answer this question we need following the Lemma.

Lemma 4.2. Let R be a ring with and MR be a right R-module. An endomorphism φ ∈ End(MR)
is sum or difference of a nilpotent n and an idempotent e, which commutes with 2 ∈ Nil(R) then
there exist a direct sum decomposition M = A⊕B such that φ|A is an element of End(A) which is
nilpotent and (1− φ)|B is an element of End(B) which is nilpotent.

Proof. Suppose φ = a−e, where e ∈ Idem(End(MR)) and a ∈ Nil(End(MR)) and suppose ea = ae.
We define decomposition M = A⊕B, by setting
A = (1− e)M and B = eM. Then A and B are φ−invariant.
Now φ|A = (a− e)|A = a|A − e|A = a|A and so φ|A is nilpotent.
And (1− φ)|B = (1− (a− e))|B = (1− a+ e)|B = (2− a− (1− e))|B = (2− a)|B is nilpotent as 2
is nilpotent.
Again, if φ = a + e, where e ∈ Idem(End(MR)) and a ∈ Nil(End(MR)), then by Definition 1.2.8
and Lemma 1.2.3 of [1] such a decomposition exists. �

Now we can state following theorem.

Theorem 4.3. A ring R is strongly nil clean if and only if R is weak* nil clean with 2 ∈ Nil(R).

Proof.(⇒) Clear from the definition of weak* nil clean ring.
(⇐) The result follows from Lemma 1.2.6 of [1] and Lemma (4.2).

Corollary 4.4. A weak* nil clean ring R with 2 ∈ Nil(R), is strongly π−regular.
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Abstract. This chapter we will present some basic survey on some of the basic algebraic structures
of groups, rings, fields (more specifically finite fields) and primitive elements. For finite field struc-
tures, we have to introduce some additional notations, symbols, and operations from elementary
addition and multiplication operations. One of the most beautiful things in finite field theory is that
the mystery behind its structure of generators, as till now there doesn’t exist any certain process to
determine the generators. Even if the exact structure can’t be determined, one can determine the
existence of such elements. So, in this chapter, we are going to discuss the methods of determining
the existence of such generators of a finite field.
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1 Introduction

A law of composition is the concept of operation to arbitrary set S is to combine elements of the
set. If S × S denote the set of all ordered pairs (a, b) with a, b ∈ S. Then a “binary operation” is a
map as S × S → S along with the condition that (a, b) ∈ S × S has an image in S, basically, this
is the closure property for the operation.

In algebraic systems, a group is a system with a single associative operation that has been
studied extensively and applied in other branches of pure as well as applied mathematics.

Definition 1.1. A group is an ordered pair (G, ∗), where G is a set ∗ is a binary operation with
the following additional properties:

(i) operation is associative i.e, a ∗ (b ∗ c) = (a ∗ b) ∗ c, where a, b, c ∈ G.

(ii) There is an identity element ′e′ in G with respect to the binary operation as a ∗ e = e ∗ a = a,
for all a ∈ G.

(iii) for each element a ∈ G, there exist an element a−1 such that a ∗ a−1 = a−1 ∗ a = e.
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Along with the above properties, if the “commutative” property is added, then the group is
called “Abelian” group.

Definition 1.2. A group is called “cyclic” if the group can be generated by a single element, i.e,
each element of the group can be expressed in terms of a particular element called “generator” of
the group.

Till now we are discussing algebraic structures with only one binary operation. But by consider-
ing two binary operations on the same set we can obtain a new algebraic structure with additional
properties. In next stage we are focusing on such algebraic structures. Such structures are ring,
integral domain,field etc., which have enormous applications in mathematics.

Definition 1.3. A ring R is an algebraic structure with two binary operations + and · namely
addition and multiplication, denoted by (R,+, ·), with following properties:

(i) (R,+) is an abelian group.

(ii) operation · is associative, i.e, a · (b · c) = (a · b) · c, for all a, b, c ∈ R.

(iii) distribution low holds on R, i.e, a · (b+ c) = a · b+ a · b, for all a, b, c ∈ R.

In the above definition the operations “+” and “·” not necessarily mean elementary addition
and multiplication. Furthermore a ring is “ring with unity” if it has multiplicative identity. To
distinguish between additive and multiplicative identity we use the notation “0” for additive and
“1” for multiplicative identity respectively. Ring (R,+, ·) is commutative if · is commutative over
R. For example (Z,+, ·) , (Q,+, ·), (R,+, ·), (C,+, ·) are examples of commutative rings with unity,
where the symbols have usual meaning.

Definition 1.4. An “integral domain” is a commutative ring with unity and without no non zero
zero-divisors, i.e, if a · b = 0 then either a = 0 or b = 0. Finally a commutative ring with unity
which non zero elements also forms a group under ·(multiplication) operation is called a “Field”.

Fields can be categorised as two types, one is infinite fields and other is finite fields. In this
chapter we are going to deal with finite fields only. Hence the following are based on finite fields.

A subfield K of a field F is a subset of F ,which itself is a field with the same operations as
F . In this context, F is called “extension field” of K. A filed is called “prime field” if it has no
proper subfield. For finite fileds, a prime field must have prime order. Further “the characteristic”
of a field F is the smallest positive integer n such that n · 1 = 0. For finite field, one can easily
determine that the characteristic must be prime. Based on this we have the following theorem,

Theorem 1.5. A finite field F has pn elements, where p is the characteristic of F and n is the
degree of extension from its prime subfield.

For every prime p and every positive integer n, there exist a finite field of order pn. Any finite
field Fq of order q = pn elements is isomorphic to the splitting field of xq − 1 over Fp. Furthermore,
every subfield of Fq has order pm , where m divides n.

With all this, we arrive at one of the most impotent theorems of this chapter, and our journey
of finding generators (later we will describe them as primitive elements) begin fro here.

Theorem 1.6. The multiplicative group F∗q of a finite field Fq is cyclic.
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For further details about this theorem, readers are requested to see any book of finite field.
Since the multiplicative group is cyclic, the question of existence of generators arise and to solve

this question the following are done.

2 Primitive Elements

We begin this section with definition of primitive element.

Definition 2.1. A generator of the multiplicative group F∗q is called a primitive element of Fq.

Now, here comes the most interesting part of this chapter. Any field of order q (i.e., Fq) has
φ(q − 1) primitive elements, where φ is the Euler’s phi-function. Even though there are φ(q − 1)
primitive elements in a finite field Fq, but finding one such primitive element may be difficult, as
there is no polynomial time algorithm to compute a primitive element, as mentioned earlier this is
one of the most beautiful and mystical phenomena in finite field theory.

Since using the properties of primitive elements , modern day cryptosystems such as ElGa-
mal crypto-system,The Diffie−Hellman key agreement protocol , RSA cryptosystem are developed,
hence to find the condition on occurrence of such elements interesting. Even though we are not
able to find exact primitive element, but there exists some methods where one can determine some
conditions to find a primitive element in context of another.

Since we are discussing about existence of a primitive element in context of another one we begin
with consideration of pairs (α, f(α)) where α( 6= 0) ∈ Fq and f(x) ∈ Fq[x] be a rational expression
of the previous one. If, for example, f(x) = 1/x, then f(α) is primitive in Fq whatever the α be
,but,this is not happening in all the cases. If we consider f(x) = x + 1 in F2 then 1 is a primitive
element of F2 but f(1) = 0 is certainly not primitive in F2. Hence the role of finding the conditions
come into play such that (α, f(α)) is a primitive pair where f(x) = x+ 1 is also primitive.

Furthermore, not only this polynomial or function, but also rational functions like f(x) = x+ 1
x

also can be considered. Various developments have been made in this area but we are mainly
focusing on this two basic functions i.e, to finding the conditions for the existence of consecutive
primitive pair or to find the primitive pair of the form α, f(α) where f(x) = x + 1 and the other
one is finding such primitive pairs where f(x) = x+ 1

x .

3 Consecutive Primitive Elements

This word is done by S.D.Cohen in “Consecutive primitive roots in a finite field” [1] , where he
focused on the conditions of existence of primitive root say α such that α + 1 is also primitive on
Fq. It can be seen that 2, 3 and 7 are not such type of q. In his work, he found a sufficient method
for proving that every other prime power can be considered as such q. For our convenience, we
denote by F ∗ the subset of F containing q for which, there exists consecutive primitive roots .

We have the stranded result provided by E. Vegh for odd prime q = p as follows:

Theorem 3.1. For p ≡ 1(mod4), if θ(p− 1) > 1
4 , then p ∈ F .

Theorem 3.2. For p ≡ 11(mod12), if θ(p− 1) > 1
3 , then p ∈ F .

Where θ is defined as θ(m) = φ(m)
m , for any positive integer m.

Based on the above results, S.D.Cohen established the following theorems. Which are helpful
for generalising the results.
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Theorem 3.3. For q(> 3) ∈ F for q 6≡ 7(mod12) and q 6≡ 1(mod60).

But for even values of q, technically it is no more difficult to establish more generalised theorem.

Theorem 3.4. For q(> 4) even,then every element of Fq can be expressed as sum of two primitive
elements, that is, in this case q ∈ F ∗.

. Some estimates of the above theorems Let α ∈ F∗q . Considering two divisors dl, d2 of q−1.
Then we use N(dl, d2) the number of elements β(6= 0,−α) in Fq such that the gcd (ω(β), dl) = 1,
(ω(β + α), d2) = 1, where ω(β) be the divisor of q − 1 such that (q − 1)/ω(β) is the order of β in
F∗q . Main objective of the estimation is to find condition such that N(q − 1, q − 1) > 0. Then for
this estimation the following lemmas are established.

Lemma 3.5. N(q − 1, q − 1) > N(dl, q − 1) + N(q − 1, d2)−N(dl, d2).

Lemma 3.6. For, e|q − 1, N(1, e) = θ(d)(q − 1)− ψβ(d),N(d, 1) = θ(d)(q − 1)− ψ−β(d).

Where ψβ(d) =

{
1 if (ω(β), d) = 1

0 otherwise

Furthermore, for α = 1 and d > 1, we have N(1, d) = θ(d)(q − 1)

and N(d, 1) =

{
1
2 (q − 3) if q ≡ 3mod(4) and d = 2

θ(d)(q − 1) otherwise

For odd values of q, the following results are given .

Lemma 3.7. N(d, 2) =

{
1
4 (q − 3) if q ≡ 3mod(4) and d = 2
1
2θ(d)(q − 1) otherwise

where q odd, α = 1 and d an even divisor of q − 1.
Furthermore, for q ≡ 1(mod4), N(2, d) = 1

2θ(d)(q − 1).

Lemma 3.8. N(q − 1, q − 1) > (θ(q − 1)− 1
4 )(q − 1), if q ≡ 1(mod4) and α = 1.

Again, if θ(q − 1) > 1, then q ∈ F .

Lemma 3.9. N(q − 1, q − 1) > 1
2 (3θ(q − 1)− 1)(q − 1), if q ≡ 3(mod4) and q > 3. Particularly if

θ(q − 1) > 1, then q ∈ F .

Based on the above theorems, the following results were obtained by Cohen in [1].

main theorems

Theorem 3.10. This theorem is for q odd, where we use the notation W (n) = 2w(n), where w(n)
denotes the number of distinct prime divisors of positive integer n. If one of the following satisfies
, then Fq has pair of consecutive primitive elements.

(i) W (q − 1) > 16 or q > 1.16× 1018.

(ii W (q − 1) > 14 or q > 4.51× 1015, where q is odd positive integer such that q 6≡ 1 mod(3).
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(iii) W (q − 1) > 13 or q > 2.82 × 1014, where q is odd positive integer such that q ≡ 1 mod(12)
and q 6≡ 1 mod(60).

Theorem 3.11. For q even prime power i.e, q = 2k, for some positive integer k, the results
established as follows, where the notations used same as above.

(i) Fq has consecutive primitive elements if k ≥ 4W (q − 1).

(ii) For k > 12, Fq has pair of primitive elements.

4 Primitive elements of special form α + α−1, when α is also primitive

For this result, a very well known “Lenstra-Schroof” has been used. To use this method we need
some more informations about “Character of finite field”, and some other useful theorems to com-
plete the result. Hence we begin this section by some definitions and proceed to various theorems
used in this method or process.

Definition 4.1. Character For a finite abelian group G and C∗ := {z ∈ C : |z| = 1} be the
multiplicative group of all complex numbers with modulus 1 . A character χ of G can be defined
as a homomorphism from G into the group C∗, which is defined as χ(a1a2) = χ(a1)χ(a2) for all
a1, a2 ∈ G. The characters of G also forms a group under multiplication called dual group or
character group of G which is denoted by Ĝ. From the definition it is clear that Ĝ is isomorphic to
G. Again the trivial character denoted by χ0 is defined as χ0(a) = 1 for all a ∈ G.

It is well known that a finite field Fqn has two types of abelian groups, such as additive group
Fqn and multiplicative group F∗qn . Hence, there exist two types of characters for finite field Fqn ,
such that additive character for Fqn and multiplicative character for F∗qn . Multiplicative characters
are used in extended from F∗qn to Fqn by applying the conditions

χ(0) =

{
0 ifχ 6= χ0

1 ifχ = χ0

Since F̂∗qn ∼= F∗qn , so F̂∗qn is cyclic and for any divisor d of qn−1, there are exactly φ(d) characters

of order d in F̂∗qn .

Definition 4.2. e-free element For a divisor k of qn − 1, an k − free element x of Fq is defined

as for any h|k, x = yd where y ∈ Fqn gives h = 1 i.e, if gcd(h, qn−1
ordqn (x) ) = 1. Hence an element

qn − 1-free, then it is primitive. Form this on, we are going to focus on the qn − 1-free elements
instead of primitive element.

Definition 4.3. Character function The character function for the subset of k-free elements of
F∗qn is defined by Cohen and Huczynska[2, 3] as follows

%k : α 7→ ∆(k)
∑
h|k

(µ(h)
φ(h)

∑
χh

χh(α))

where ∆(k) := φ(k)
k , µ be the Möbius function and χd denotes multiplicative character of order h.

Theorems used in the main result

Theorem 4.4. ([5], Theorem 5.4)
∑
α∈G

χ(α) = 0 and
∑
χ∈Ĝ

χ(α) = 0. Where χ is any

nontrivial character and α any nontrivial element of finite abelian group G.
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Theorem 4.5. ([6], theorem 5.11) Let χ be a nontrivial multiplicative character and ψ a non-
trivial additive character of Fqn . Then

|
∑

α∈F∗
qn

χ(α)ψ(α)| = qn/2.

Theorem 4.6. ([6], Corollary 2.3.
For two nontrivial multiplicative characters χ1, χ2 of the finite field Fq. Let g1(x) and g2(x) be
two monic polynomials which are pairwise coprime in Fq[x], in which fi(x) can not be of the form
h(x)ord(χi) for i = 1, 2; h(x) ∈ Fqn [x] with degree at least 1. Then

|
∑
x∈Fq

χ1(g1(x))χ2(g2(x))| ≤ (n1 + n2 − 1)q1/2

where n1 and n2 are the degrees of largest square free divisors of g1 and g2 respectively.

Theorem 4.7. ([5], Theorem 5.41)
For a multiplicative character χ of Fqn of order k > 1 and g ∈ Fqn [x] be a monic polynomial of
positive degree such that, it is not an kth power of a polynomial over Fqn . Let h be the number of
distinct roots of g in its splitting field over Fqn . Then for every a ∈ Fqn , we have

|
∑

α∈Fqn
χ(ag(α))| ≤ (h− 1)qn/2

Lemma 4.8. ([4], Lemma 2.6)
Let n > 1, d > 1 be integers and Γ be the set of primes ≤ d. Then the set defined as L = Π

a∈Γ
r.

Consider that every prime factor a < d of n is in the set Γ. Then
W (n) ≤ log n−logL

log d + |Γ| (4.1)

Taking m a positive integer and pm is to denote the mth prime. If d = pm, then Γ becomes the
set of primes such that the primes are less than pm , |Γ| = m i.e., and hence the inequality (4.1)
becomes

W (n) ≤
log n−

m∑
i=1

log pi

log pm
+ m (4.2)

Main theorem

After using all the results above Liao, Li and Pu established the following result in [1]. They are
using the “Lenstra-Schroof” method to find the results.

Theorem 4.9. The necessary condition for the existence of the primitive element of the form
α + α( − 1) in finite field is Fq, where gcd(q, n)=1 is q

n
2 > 2ω. Here ω denotes the number of

distinct prime divisors of qn − 1.

By applying this theorem, one can establish that for n > 13 and k ≥ 4, then Fqn has such
primitive pair.

5 Conclusion

From the above results we come to the conclusion that the above results that even though deter-
mining the primitive elements is not possible yet, but the problem of existence of primitive roots
in context of one-another is opening new windows of opportunities in this area of finite field. By
taking different rational expressions, with the same process one can obtain further results, which
will be very helpful to apply in different areas of finite field, coding theory and cryptography.
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Abstract. In [2], R. Apéry while proving the irrationality of ζ(2) and ζ(3) introduced the numbers
An and Bn, defined respectively as

An =

n∑
k=0

(
n+ k

k

)(
n

k

)2

and Bn =

n∑
k=0

(
n+ k

k

)2(
n

k

)2

.

These numbers were found to satisfy many interesting properties. In this survey we shall discuss
numerous works done in this direction including congruences satisfied by them and generalized
Apéry-like numbers.

Keywords. Apéry numbers, Gaussian hypergeometric series, Supercongruences.

1 Introduction

In the year 1979, R. Apéry[2] while proving the irrationality of ζ(2) =

∞∑
n=0

1

n2
and ζ(3) =

∞∑
n=0

1

n3

introduced the numbers An and Bn, given by

An =

n∑
k=0

(
n+ k

k

)(
n

k

)2

and Bn =

n∑
k=0

(
n+ k

k

)2(
n

k

)2

.

The Apéry number An rises as a solution of the recursion formula

(n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1; u−1 = 0, u0 = 1, (1)

for (a, b, c) = (11, 3,−1). In [19], Zagier discovered other values of the parameters (a, b, c) for which
(1) has an integral solution. As a result, he discovered six sporadic solutions apart from other
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solutions. With the choice of parameters (a, b, c, d) = (17, 5, 1, 0), the sequence Bn satisfy another
three-term recurrence

(n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − n(cn2 + d)un−1; u−1 = 0, u0 = 1 (2)

in the similar way as An do in (1). For d = 0, Almkvist & Zudilin [1] performed a systematic
computer search to find six sporadic solutions for (2) in addition to other integral solutions. In
the similar way Cooper [8] introduced an additional parameter d and further obtained three more
sporadic solutions.

The integral solutions of (1) and (2) for particular values of the parameters obtained by Zagier
[19], Almkvist & Zudilin [1] and Cooper [8], are named as Apéry-like numbers as these numbers enjoy
many of the remarkable properties of the Apéry numbers, such as satisfying Lucas congruences,
connections to modular forms, and supercongruences. The integral solutions to both the recurrence
relations are listed in Table 1 and Table 2.

(a, b, c) A(n)

(a) (7, 2,−1)
∑
k

(
n
k

)3
(b) (11, 3,−1)

∑
k

(
n
k

)2(n+k
k

)
(c) (10, 3, 9)

∑
k

(
n
k

)2(2k
k

)
(d) (12, 4, 32)

∑
k

(
n
k

)(
2k
k

)(
2(n−k)
n−k

)
(f) (9, 3, 27)

∑
k(−1)k3n−3k

(
n
3k

) (3k)!
k!3

(g) (17, 6, 72)
∑
k,l(−1)k8n−k

(
n
k

)(
k
l

)3
Table 0.1: Sporadic solutions of the recurrence relation (1)

Along with certain congruence properties, these numbers also holds relation to hypergeometric
functions and modular forms as well. In this article we shall discuss the research in this direction.

2 Congruences satisfied by Apery and Apéry-like numbers

Since the introduction of Apéry numbers, mathematicians started looking more closely at these
numbers and found that they satisfy many interesting properties. Some of the important results
concerning periodic and congruence properties satisfied by the Apéry numbers are discussed briefly
in this section.

Chowla, Cowles, and Cowles [7] were first to study properties of Apéry numbers. They proved
many basic congruences for the Apéry numbers together with the fact that Bn is odd.

Proposition 2.1 ([7]). For n ≥ 0, B5n+1 ≡ 0 (mod 5) and B5n+3 ≡ 0 (mod 5).

Theorem 2.2 ([7]). For all primes p, Bp ≡ 5 (mod p2).
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(a, b, c, d) B(n)

(δ) (7, 3, 81, 0)
∑
k(−1)k3n−3k

(
n
3k

)(
n+k
n

) (3k)!
k!3

(η) (11, 5, 125, 0)
∑
k=0(−1)k

(
n
k

)3 ((4n−5k−1
3n

)
+
(

4n−5k
3n

))
(α) (10, 4, 64, 0)

∑
k

(
n
k

)2(2k
k

)(
2(n−k)
n−k

)
(ε) (12, 4, 16, 0)

∑
k

(
n
k

)2(2k
n

)2
(ζ) (9, 3,−27, 0)

∑
k,l

(
n
k

)2(n
l

)(
k
l

)(
k+l
n

)
(γ) (17, 5, 1, 0)

∑
k

(
n
k

)2(n+k
k

)2
(s7) (13, 4,−27, 3)

∑
k

(
n
k

)2(n+k
k

)(
2k
n

)
(s10) (6, 2,−64, 4)

∑
k

(
n
k

)4
(s18) (14, 6, 192,−12)

∑
k=0

(
n
k

)(
2k
k

)(
2(n−k)
n−k

) [(
2n−3k−1

n

)
+
(

2n−3k
n

)]
Table 0.2: Sporadic solutions of the recurrence relation (2)

In addition, they proposed that the Apéry numbers satisfy the following properties.

Theorem 2.3 ([7]). For n ≥ 0 and p ≥ 5,

(i) B2n ≡ 1 (mod 8).

(ii) B2n+1 ≡ 5 (mod 8).

(iii) B2n ≡ 1 (mod 3).

(iv) B2n+1 ≡ 2 (mod 3).

(v) Bp ≡ 5 (mod p3).

(vi) B2n+1 ≡ 0(mod 5).

I. Gessel [10] confirmed almost all congruences of Theorem 2.3, and proved that Bn satisfies the
Lucas congruence i.e., if n = n0 + n1p+ · · ·+ nrp

r is the expansion of n in base p, then

Bn ≡ Bn0Bn1 · · ·Bnr (mod p).

Moreover, he proved that for primes p ≥ 5,

Bpn ≡ Bn(mod p3). (3)

Based on the Lucas property of Apéry numbers, Gessel examined periodic properties of the Apéry
numbers in modulo 8 and 9.

Theorem 2.4 ([10], Theorem 3).

(i) Bn ≡ 5n (mod 8).

(ii) Bn0+3n1+···+3sns ≡ Bn0Bn1 · · ·Bns (mod 9), where 0 ≤ ni < 3.
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He further posed a problem on periodicity of these numbers in modulo 16, which is recently
solved by E. Rowland and R. Yassawi [18].

Extending certain results of Mimura [13], F. Beukers [3] gave the following result.

Theorem 2.5 ([3], Theorem 1). Let m, r ∈ N and p > 3. Then

Ampr−1 ≡ Ampr−1−1 (mod p3r) (4)

Bmpr−1 ≡ Bmpr−1−1 (mod p3r). (5)

Recently, Malik and Straub [12] proved that the Lucas congruence is satisfied by all the sporadic
solutions of recursions (1) and (2) listed in Table 1 and 2. As an application, they deduced certain
periodic properties for those numbers.

Definition 2.6 (Periodic sequences). A sequence C(n) is eventually periodic if there exists an
integer M > 0 such that C(n+m) = C(n) for all sufficiently large n.

Corollary 2.7 ([12], Corollary 5.1). None of the sequences from Tables 1 and 2 is eventually
periodic modulo p for any prime p > 5.

For periodicity of the numbers arising from the recurrence relation (1) and (2), they gave the
following result.

Corollary 2.8 ([12], Corollary 5.2). Let C(n) be any sequence from Tables 1 and 2.

• C(n) ≡ C(1) (mod 2) for all n ≥ 1.

• C(n) ≡ C(1) (mod 3) for all n ≥ 1 if C(n) is one of (c), (f), (g), (δ), (α), (ε), (ζ), s18, and
C(n) ≡ (−1)n (mod 3) for all n ≥ 0 if C(n) is (a)or (γ).

• C(n) ≡ 3n (mod 5) for all n ≥ 0 if C(n) is (b), and C(n) ≡ 0 (mod 5) for all n ≥ 1 if C(n)
is (η).

3 Congruences for generalization of Apéry-like numbers

The development of Apéry numbers and their related congruences motivated mathematicians to
introduce mathematically riched other number theoretical objects exhibiting similar types of prop-
erties.

M. Coster [9] considered a generalization of Apéry numbers given by the formula

A(n,m, l, λ) :=

n∑
k=0

(
n

k

)m(
n+ k

k

)l
λk,

and proved that for m, l ∈ N, λ = ±1 and p ≥ 5,

A(spr,m, l, λ) ≡ A(spr−1,m, l, λ) (mod p3r) if m ≥ 3, (6)

A(spr − 1,m, l, λ) ≡ A(spr−1 − 1,m, l, λ) (mod p3r) if l ≥ 3.
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Note that the above congruences are generalizations of (3), (4), and (5) on Apéry numbers.
Recently, Krattenthaler and Möller [11] characterized the modular behaviour of these generalised
Apéry numbers in modulo 9.

The identification of Apéry numbers as the coefficients of certain power series motivated Chan,
Cooper, and Sica [5] to obtain certain Apéry-like sequences including the Domb numbers

βn =

n∑
j=0

(
n

j

)2(
2j

j

)(
2(n− j)
n− j

)
.

They further proved that (3) is satisfied by some of them, and for other the relation is posed
as conjectures. Two of their conjectures were proved by Chan, Kontogeorgis, Krattenthaler and
Osburn [6] using combinatorial properties of the power series expansion of modular forms. Osburn
and Sahu [17] proved other two congruences using theory of modular forms while the remaining
three conjectures are still open.

Osburn-Sahu [15, 16] considered generalization of Apéry-like numbers (ε) and (α) in Table 2 as

C(n,A,B) :=

n∑
k=0

(
n

k

)A(
2k

k

)B
, and D(n,A,B,C) :=

n∑
k=0

(
n

k

)A(
2k

k

)B(
2(n− k)

n− k

)C
and deduced that these two generalized sequences also satisfy (6). Furthermore, Osburn-Sahu-
Straub [14] considered generalization of s7 in Table 2 as

S(n,A,B,C) :=

n∑
k=0

(
n

k

)A(
n+ k

k

)B(
2k

n

)C
and proved that (6) is followed by these numbers for A ≥ 2 and B,C ≥ 0.

4 Conclusion

The importance of Apéry number congruences lies in the fact that the relations satisfied by them
are akin to Akin Swinnerton-Dyer congruences for special congruence subgroups. For details see [4].
Along with the discussed properties, the Apéry numbers has also connections to other mathematical
objects, including modular froms and hypergeometric functions.
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1 Introduction

A partition π = (π0, π1, . . . , πk−1) of a nonnegative integer n is a finite sequence of non-increasing
positive integer parts π0, π1, . . . , πk−1 such that π0+π1+· · ·+πk−1 = n. The partition function p(n)
is defined as the number of partitions of n. For example, p(5)=7, since there are seven partitions
of 5, namely,

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

By convention, p(0) = 1. The generating function for p(n), due to Euler, is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
,

where, for any complex number a and q, with |q| < 1, we define

(a; q)0 := 1,

(a; q)n :=

n−1∏
k=0

(1− aqk), n ≥ 1

49
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and

(a; q)∞ := lim
n→∞

(a; q)n.

Ramanujan [11], found nice congruence properties for p(n) modulo 5, 7, and 11, namely, for any
nonnegative integer n,

p(5n+ 4) ≡ 0 (mod 5), (7)

p(7n+ 5) ≡ 0 (mod 7), (8)

and

p(11n+ 6) ≡ 0 (mod 11). (9)

In 1944 Dyson [5] defined the rank of a partition as the largest part minus the number of parts.
For example, the partition 5 + 4 + 3 + 1 has rank 5 − 4 = 1. Let N(m,n) denote the number of
partitions of n with rank m, then

∞∑
n=0

∞∑
m=−∞

N(m, n)zmqn =

∞∑
k=0

qk
2

(zq; q)k(z−1q; q)k
.

Let N(r, m, n) denote the number of partitions of n with rank congruent to r modulo m. In
the same paper, he conjectured that

(i) N(r, 5, 5n+ 4) =
1

5
p(5n+ 4), 0 ≤ r ≤ 4,

(ii) N(r, 7, 7n+ 5) =
1

7
p(7n+ 5), 0 ≤ r ≤ 6.

It is easy to see that the above two conjectures imply Ramanujan’s congruences (7) and (8)
respectively. These conjectures were subsequently proved by Atkin and Swinnerton-Dyer [3] in
1954. However Dyson’s rank did not separate the partition of 11n + 6 into 11 equal classes even
though Ramanujan’s congruence (9) holds. So, he conjectured an analogue of rank, called crank,
which would be able to imply all the three congruences. After forty four years, Andrews and Garvan
[1] defined the crank of a partition as

crank(π) :=

{
π0, if µ(π) = 0,
ν(π)− µ(π), if µ(π) > 0,

where, µ(π) denotes the number of ones in π and ν(π) denotes the number of parts of π larger
than µ(π). For example, the partition 5 + 4 + 3 + 1 has crank 3 − 1 = 2. The crank provided
combinatorial interpretation of all the three congruences (7)–(9).

Let M(m,n) denote the number of partitions of n with crank m, then

∞∑
n=0

∞∑
m=−∞

M(m, n)zmqn =
(q; q)∞

(zq; q)∞(z−1q; q)∞
.

Let M(r, m, n) denote the number of partitions of n with crank congruent to r modulo m. In
the same paper, they provided the following interpretations
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(i) M(r, 5, 5n+ 4) =
1

5
p(5n+ 4), 0 ≤ r ≤ 4,

(ii) M(r, 7, 7n+ 5) =
1

7
p(7n+ 5), 0 ≤ r ≤ 6,

(iii) M(r, 11, 11n+ 6) =
1

11
p(11n+ 6), 0 ≤ r ≤ 10.

2 Literature Review

Lewis [10] gave a combinatorial proof to show that

(i) N(0, 2, 2n) < N(1, 2, 2n) and

(ii) N(1, 2, 2n+ 1) < N(0, 2, 2n+ 1).

Andrews and Lewis [2] proved several inequalities as given in the following theorems.

Theorem 2.1. For all n ≥ 0

(i) M(0, 2, 2n) > M(1, 2, 2n) and

(ii) M(1, 2, 2n+ 1) > M(0, 2, 2n+ 1).

Theorem 2.2. For n = 2, 8, 10 and 26,

N(0, 4, n) = N(2, 4, n),

while, for all other n,

N(0, 4, n) >N(2, 4, n) if n ≡ 0, 1 (mod 4),

N(0, 4, n) <N(2, 4, n) if n ≡ 2, 3 (mod 4).

Theorem 2.3. (i) For n 6= 1, M(0, 4, 2n) > M(1, 4, 2n),

(ii) For n 6= 2, M(0, 4, 2n− 1) < M(1, 4, 2n− 1),

(iii) For n > 0, M(2, 4, 2n) > M(1, 4, 2n),

(iv) For n > 0, M(2, 4, 2n− 1) < M(1, 4, 2n− 1).

Theorem 2.4. (i) For all n ≥ 1, N(0, 4, 2n) < N(1, 4, 2n),

(ii) For all n ≥ 1, N(0, 4, 2n− 1) > N(1, 4, 2n− 1),

(iii) For all n ≥ 1, N(2, 4, 2n) < N(1, 4, 2n),

(iv) For all n ≥ 2, N(2, 4, 2n− 1) > N(1, 4, 2n− 1).
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They also showed that∑
n≥0

{M(0, 3, n)−M(1, 3, n)} qn =
(q; q)2

∞
(q3; q3)∞

and ∑
n≥0

{M(0, 4, n)−M(2, 4, n)} qn =
(q; q)∞(q2; q2)∞

(q4; q4)∞

and made the following conjectures.

Conjecture 2.5. For all n > 0

N(0, 3, 3n) < N(1, 3, 3n), (10)

N(0, 3, 3n+ 1) > N(1, 3, 3n+ 1), (11)

N(0, 3, 3n+ 2) < N(1, 3, 3n+ 2). (12)

Conjecture 2.6. For all n,

M(0, 3, 3n) > M(1, 3, 3n), (13)

M(0, 3, 3n+ 1) < M(1, 3, 3n+ 1), (14)

M(0, 3, 3n+ 2) ≤M(1, 3, 3n+ 2) if n 6= 1, (15)

with strict inequality in (15) if n 6= 4, 5.

Conjecture 2.7. For n 6= 5,

M(0, 4, n) ≥M(2, 4, n) if n ≡ 0, 3 (mod 4), (16)

M(0, 4, n) ≤M(2, 4, n) if n ≡ 1, 2 (mod 4), (17)

the inequalities being strict if n 6= 11, 15, 21.

By using the circle method Kane [6] proved the first conjecture, Chan [4] proved the second
conjecture, and Kim [8] found a more general proof of (13)–(17).

Several other such congruences have been given by various mathematicians. For example, Kang
[7] conjectures that the sign of a certain arithmetic function

N(6)(n) :=
∑

r=0,±1

N(r, 6, n)−
∑

r=3,±2

N(r, 6, n)

is alternating, which has been proved Kim and Nam [9] by using the circle method. Also, with the
help of this result, they could find the following results.

Corollary 2.8. Let r2(n) be the number of representations of n as a sum of two squares and p(n)
be the number of partitions of n. Then, for all integers n > 1,

bn/3c∑
k=0

(1)nkr2(k)p(n− 3k) > 0.
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Corollary 2.9. For all positive integers n > 1,

(1)n
bn/3c∑
k=0

c3(n− 3k)wpod(k) > 0,

where ct(n) is the number of t-core partitions of n and

wpod(n) :=
∑

π∈POD(n)

(1)#o(π),

POD(n) being the set of partitions of n with distinct odd parts and #o(π), the number of odd parts
in the partition π.

3 Conclusion

Most of the conjectures mentioned above have been proved by using the circle method. But it
would be interesting to find the elementary proofs using Ramanujan’s theta function identities and
some identities involving the Rogers-Ramanujan continued fraction.

4 Bibliography

[1] Andrews, G. E. and Garvan, F. G. Dyson’s crank of a partition. Bulletin of the American
Mathematical society, 18(2):167–171, 1998.

[2] Andrews, G. E. and Lewis, R. The ranks and cranks of partitions moduli 2, 3 and 4. Journal
of Number Theory, 85(1):74–84, 2000.

[3] Atkin, A. O. L. and Swinnerton-Dyer, P. Some properties of partitions. Proceedings of the
London Mathematical Society (3), 4:84–106, 1954.

[4] Chan, O.-Y. Some asymptotics for cranks. Acta Arithmetica, 120:107–143, 2005.

[5] Dyson, F. J. Some guesses in the theory of partitions. Eureka, 8:10–15, 1944.

[6] Kane, D. M. Resolution of a conjecture of Andrews and Lewis involving cranks of partitions.
Proceedings of the American Mathematical Society, 132:2247–2256, 2004.

[7] Kang, S.-Y. Mock Jacobi forms in basic hypergeometric series. Compositio Mathematica,
145:553–565, 2009.

[8] Kim, B. Periodicity of signs of Fourier coefficients of eta quotients. Journal of Mathematical
Analysis and Applications, 385:998–1004, 2012.

[9] Kim, B. and Nam, H. On a conjecture of Soon-Yi Kang on a certain partition rank difference.
The Ramanujan Journal, 35:467–477, 2014.

[10] Lewis, R. P. The ranks of partitions modulo 2. Discrete Mathematics, 167/168:445–449, 1997.

[11] Ramanujan, S. Some properties of p(n), the number of partitions of n. Proceedings of the
Cambridge Philosophical Society, 19:207–210, (1919).





A review on `-Regular Partition Function

Chayanika Boruah
Department of Mathematics, USTM Meghalaya, Ribhoi-793101, Meghalaya, India.

email: cboruah123@gmail.com

Abstract. Study of different partition function with some certain restriction and proving ramanu-
jan type congruences has become one of the rich research topic of recent times. Here, in this paper,
we have done a literature review on `-regular partition

2010 Mathematical Sciences Classification. Primary 16N40, 16U99.

Keywords. `-regular partition; partition congruence; q-series identities; Ramanujan’s theta-
functions.

1 Introduction

The theory of partitions of numbers is an interesting branch of number theory.The concept of
partitions was given by Leonard Euler in 18 th century. After Euler though, the theory of partition
had been studied and discussed by many other prominent mathematicians like Gauss, Jacobi,
Schur, McMahon and Andrews etc but the joint work of Ramanujan with Prof. G.H. Hardy made
a revolutionary change in the field of partition theory of numbers. Ramanujan and Hardy invented
circle method which gave the first approximations of the partition of numbers beyond 200.

A partition of a positive integer n is a non-increasing sequence of positive integers, called parts,
whose sum equals n. The number of partitions of a positive integer n is denoted by p(n). For
convenience, we set p(0) = 1, which means it is considered that 0 has one partition. The generating
function for the partition function is generally given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
(18)

where

(a; q)∞ =

∞∏
n=0

(1− aqn) (19)

.
In 1919, Ramanujan [Ram19], [Ram00, p. 210-213] established

p(5n+ 4) ≡ 0 (mod 5), (20)
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p(7n+ 5) ≡ 0 (mod 7), (21)

p(11n+ 6) ≡ 0 (mod 11) (22)

Ramanujan’s theta-functions identities are defined by

φ(q) := f(q, q) =

∞∑
n=−∞

qn
2

= (−q; q2)2
∞(q2; q2)∞,

ψ(q) := f(q, q3) =

∞∑
k=0

qk(k+1)/2 = (q2; q2)∞(q; q2)∞,

and

f(−q) := f(−q,−q2) =

∞∑
n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞,

where f(a, b) =
∑∞
k=−∞ ak(k+1)/2bk(k−1)/2, |ab| < 1 is the Ramanujan’s general theta-function

Motivated by Ramanujan’s congruences on p(n) many other partition function are studied and
Ramanujan type congruences are established by several mathematicians and researchers.One of the
famous partition function is `-regular partition. For any positive integer `, `-regular partition of a
positive integer n is a partition of n such that none of its part is divisible by `. For example,the
number of 3-regular partition of 5 is 5 , namely

5, 4 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

If b`(n) denotes the number of `-regular partition of n, then the generating function of b`(n) is given
by

∞∑
n=0

bl(n)qn =
(q`; q`∞
(q; q)∞

. (23)

2 Review of related literature for `-regular partition function

In recent times study of partition function with some certain restrictions has become one of the
popular research topic. The arithmetic properties of `-regular partitions have been studied by
many authors, for example see [AB16, BD15, CW14, CG13, DP09, HS10, Web11, XY14a, XY14b,
Pen08] and references there in. Numerous congruences of the `-regular partition function have
been established in the spirit of Ramanujan by employing theta function identities and modular
equations.

Andrews, Hirchhorn and Sellers [AHS10] proved some infinite family of congruences modulo 2
and 3 for b4(n). For example, for α ≥ 1 and n ≥ 0,

b4
(
32α+2n+

19 · 32α+1 − 1

8

)
≡ 0 (mod 6). (24)

Hirchhorn and Sellers [HS10] obtained results for 5-regular partitions that are stronger than those
obtained by Calkin et al. [CDJ08] They found infinitely many congruences for b5(n) and also they
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proved that b5(n) is even for at least 75% of the positive integers n. Webb [Web11] established an
infinite family of congruences modulo 3 for b13(n). For example, for α ≥ 2 and n ≥ 0,

b13

(
3αn+

5 · 3α−1 − 1

2

)
≡ 0 (mod 3). (25)

Furcy and penniston [FP12] established some infinite families of congruences modulo 3 using theory
of modular forms. For example,

b7
(
32α+3n+

5 · 32α+2 − 1

4

)
≡ 0 (mod 3). (26)

Xia and Yao [XY14a] proved several infinite families of congruences modulo 2 for b9(n). For example,
for α ≥ 0 and n ≥ 0,

b9
(
26α+4n+

5 · 26α+3 − 1

3

)
≡ 0 (mod 2), (27)

b9
(
26α+7n+

26α+6 − 1

3

)
≡ 0 (mod 2). (28)

Cui and Gu [CG13] also studied arithmetic properties of `-regular partition function where ` =
2, 4, 5, 8, 13, 16 and established some results by using p-dissections identities for Ramanujan’s theta
function ψ(q) and f(−q). For example, for α ≥ 2 and n ≥ 0,

b5
(
4 · 52α+1n+

31 · 52α − 1

6

)
≡ 0 (mod 2). (29)

For any odd prime p, α ≥ 1, and n ≥ 0,

b4
(
p2αn+

(8i+ p)p2α − 1

8

)
≡ 0 (mod 2). (30)

Baruah and Das [BD15] proved some parity results for 7-regular and 23-regular partitions by employ-
ing Ramanujan’s theta functions and their dissections. For example, if r ∈ {3, 4, 6} and s ∈ {1, 5, 6}
then for all n, α ≥ 0, we have

b7
(
2 · 72α+1n+ 2r · 72α +

5(72α − 1)

4
+ 1
)
≡ 0 (mod 2), (31)

b7
(
2 · 72(α+1)n+ 2s · 72α+1 +

21 · 72α − 1

4

)
≡ 0 (mod 2), (32)

Baruah and Ahmed [AB16], proved several congruences for l-regular partitions for ` ∈ {5, 6, 7, 49}
by using p-dissections of (q; q)∞, ψ(q), (q; q)3

∞ and ψ(q2)(q; q)2
∞. By using theory of modular forms,

they also find alternative proofs of the congruences for 10- and 20- regular partitions which were
earlier proved by Carlson and Webb [CW14]. For example, If p is a prime such that p ≡ −1
(mod 6) then for all α ≥ 0

∞∑
n=0

b5(25p2αn+
25 · p2α − 1

6
)qn ≡ (−1)α·

p−2
3 5pα(q; q)4

∞ (mod 25) (33)
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3 Concluding Remarks

As we have seen that there are so many Ramanujan’s type congruences for `-regular partition
function with respect to certain modulo that have been proved by different mathematicians. Those
results that are obtained by employing some modular equation or q-series identities which will help
the researchers to do futher research in partition theory.
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1 Introduction

A natural number n is called a balancing number with balancer r if

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r).

The concept of balancing numbers were introduced by Behera and Panda in [1]. Since then, several
people have studied these numbers and their modifications (see [5, 7, 8] and the references therein).
One of these modifications is the concept of an almost balancing number introduced by Panda and
Panda in [6], which is defined as below.

Definition 1.1. A natural number n is called an almost balancing number if it satisfies the equation

1 = |(n+ 1) + (n+ 2) + · · ·+ (n+ r)− {1 + 2 + · · ·+ (n− 1)}|,

for some natural number r called the almost balancer corresponding to n.
If

(n+ 1) + (n+ 2) + · · ·+ (n+ r)− {1 + 2 + · · ·+ (n− 1)} = 1

then n is called an A1 balancing number, and if

(n+ 1) + (n+ 2) + · · ·+ (n+ r)− {1 + 2 + · · ·+ (n− 1)} = −1

then n is called an A2 balancing number. Similar terminology is used for r.

1Supported by the Austrian Science Foundation FWF, SFB grant F50.
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Recently, in [4], Panda and Panda defined circular balancing numbers as below.

Definition 1.2. Let k be a fixed positive integer. We call a positive integer n, a k-circular balancing
number if the Diophantine equation

(k + 1) + (k + 2) + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+m+ (1 + 2 + · · ·+ k − 1)

holds for some natural number m.

Inspired by the recent work of Panda and Panda [6], we make the following definition.

Definition 1.3. Let k be a fixed positive integer. We call a positive integer n, an almost k-circular
balancing number if the Diophantine equation

(k + 1) + (k + 2) + · · ·+ (n− 1) + 1 = (n+ 1) + (n+ 2) + · · ·+m+ (1 + 2 + · · ·+ k − 1)

holds for some natural number m.

We observe that, if k = 0 we get the almost balancing numbers (also, 1-circular balancing numbers);
and if k = 1, we get the balancing numbers (also, 0-circular balancing numbers).

This paper is structured as follows: in Section 2 we motivate the study of almost circular
balancing numbers, in Sections 3,4 and 5, we shall look into the cases k = 2, 3 and 4 in details, and
in Section 6 remark for the general case. Our results are inspired by that of Panda and Panda [4]
and have a similar flavour. Since the derivations are somewhat routine, we shall skip some details
from the cases k = 3 and 4. We shall close the paper with some general comments in Section 7 for
future directions of study.

2 Motivation

Recently, Davala and Panda in [2], introduced the concept of aD-subbalancing andD-superbalancing
numbers. They defined them as follows.

Definition 2.1. For a positive integer D, we call a positive integer n, a D-subbalancing number if

1 + 2 + · · ·+ (n− 1) +D = (n+ 1) + (n+ 2) + · · ·+ (n+ r),

for some natural number r. If D < 0, then such a number n is called a D-superbalancing number.

At the end of their paper, they posed the question about which values of D are feasible in their
definition. In this regard, we give the following theorems.

Theorem 2.2. If D = k2, then the D-superbalancing numbers are the k circular balancing numbers.

Proof. This follows from Definitions 1.2 and 2.1.

Theorem 2.3. If D = k2+1, then the D-superbalancing numbers are the almost k circular balancing
numbers.

Proof. This follows from Definitions 1.3 and 2.1.

Hence, it is interesting in the context of superbalancing numbers as well to study the circular
and almost circular balancing numbers. In fact, the above and our results in Section 6 as well as
results from Panda and Panda in [4] shows that there are infinitely many values of D for which
there exists D-superbalancing numbers.
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3 Almost 2 Circular Balancing Numbers

By the definition, a natural number x is an almost 2-circular balancing number if

3 + 4 + · · ·+ (x− 1) + 1 = (x+ 1) + · · ·+m+ 1,

holds for some m. This gives us m2 + m = 2x2 − 6. Thus, a natural number x > 2 is almost
2-circular balancing number if and only if 8x2 − 23 is a perfect square, say some y2. This means
that to characterize this class of numbers, we have to solve the following generalized Pell’s equation

y2 − 8x2 = −23. (34)

As already noted in [4], the fundamental solution of the Pell’s equation y2− 8x2 = 1 is 3 +
√

8, and
a fundamental solution of equation (34) is 3 + 2

√
8. So, one class of almost 2-circular balancing

numbers can be found from

yn +
√

8xn = (3 + 2
√

8)(3 +
√

8)n−1,

for n = 1, 2, . . .. Hence, the nth member in this class is given by

xn =
(3 + 4

√
2)(3 + 2

√
2)n−1 − (3− 4

√
2)(3− 2

√
2)n−1

4
√

2
,

for n = 1, 2, . . .. This can be expressed as xn = 2Bn − 3Bn−1, where we use the Binet form for
balancing numbers from [1], for n = 1, 2, . . ..

It is known that y−n +
√

8x−n is also a solution of equation (34), and using B−n = −Bn we
can conclude that x′n = 3Bn+1 − 2Bn is another class of solutions for almost 2-circular balancing
numbers. It can be seen that (34) has only two families of solutions, so these are the full list of such
almost 2-circular balancing numbers. We can in fact recursively calculate these solutions using the
recurrence relations

xn+1 = 6xn − xn−1

and

x′n+1 = 6x′n − x′n−1,

with initial values x0 = 3, x1 = 2, x′0 = 2, x′1 = 3. Thus, we have proved the following theorem.

Theorem 3.1. The almost 2-circular balancing numbers are the solutions in x of the generalized
Pell’s equation y2 − 8x2 = −23 and are partitioned into two classes given by xn = 2Bn − 3Bn−1

and x′n = 3Bn+1 − 2Bn for n = 1, 2, . . .. They satisfy the recurrence relations xn+1 = 6xn − xn−1

and x′n+1 = 6x′n − x′n−1, with initial values x0 = 3, x1 = 2, x′0 = 2, x′1 = 3.

4 Almost 3 Circular Balancing Numbers

By the definition, a natural number x is an almost 3-circular balancing number if

4 + 5 + · · ·+ (x− 1) + 1 = (x+ 1) + · · ·+m+ 1 + 2,
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holds for some m. This gives us m2 + m = 2x2 − 16. Thus, a natural number x > 2 is almost
3-circular balancing number if and only if 8x2 − 63 is a perfect square, say some y2. This means
that to characterize this class of numbers, we have to solve the following generalized Pell’s equation

y2 − 8x2 = −63. (35)

A fundamental solution of equation (35) is 3 + 3
√

8. So, one class of almost 3-circular balancing
numbers can be found from

yn +
√

8xn = (3 + 3
√

8)(3 +
√

8)n−1,

for n = 1, 2, . . .. Hence, the nth member in this class is given by

xn =
(3 + 6

√
2)(3 + 2

√
2)n−1 − (3− 6

√
2)(3− 2

√
2)n−1

4
√

2
,

for n = 1, 2, . . .. This can be expressed as xn = 3Bn − 6Bn−1, where we use the Binet form for
balancing numbers from [1], for n = 1, 2, . . ..

Further, we can conclude that x′n = 6Bn+1 − 3Bn is another class of solutions for almost 3-
circular balancing numbers. It can be seen that (35) has only two families of solutions, so these are
the full list of such almost 3-circular balancing numbers. We can in fact recursively calculate these
solutions using the recurrence relations

xn+1 = 6xn − xn−1

and
x′n+1 = 6x′n − x′n−1,

with initial values x0 = 3, x1 = 6, x′0 = 6, x′1 = 3. Thus, we have proved the following theorem.

Theorem 4.1. The almost 2-circular balancing numbers are the solutions in x of the generalized
Pell’s equation y2 − 8x2 = −63 and are partitioned into two classes given by xn = 3Bn − 6Bn−1

and x′n = 6Bn+1 − 3Bn for n = 1, 2, . . .. They satisfy the recurrence relations xn+1 = 6xn − xn−1

and x′n+1 = 6x′n − x′n−1, with initial values x0 = 3, x1 = 6, x′0 = 6, x′1 = 3.

5 Almost 4 Circular Balancing Numbers

By the definition, a natural number x is an almost 4-circular balancing number if

5 + 6 + · · ·+ (x− 1) + 1 = (x+ 1) + · · ·+m+ 1 + 2 + 3,

holds for some m. This gives us m2 + m = 2x2 − 30. Thus, a natural number x > 2 is almost
4-circular balancing number if and only if 8x2 − 119 is a perfect square, say some y2. This means
that to characterize this class of numbers, we have to solve the following generalized Pell’s equation

y2 − 8x2 = −119. (36)

A fundamental solution of equation (36) is 3 + 4
√

8. So, one class of almost 4-circular balancing
numbers can be found from

yn +
√

8xn = (3 + 4
√

8)(3 +
√

8)n−1,
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for n = 1, 2, . . .. Hence, the nth member in this class is given by

xn =
(3 + 8

√
2)(3 + 2

√
2)n−1 − (3− 8

√
2)(3− 2

√
2)n−1

4
√

2
,

for n = 1, 2, . . .. This can be expressed as xn = 4Bn − 9Bn−1, where we use the Binet form for
balancing numbers from [1], for n = 1, 2, . . ..

Further, we can conclude that x′n = 9Bn+1 − 4Bn is another class of solutions for almost 4-
circular balancing numbers.

It can be seen that (36) has four families of solutions. Another fundamental solution of equation
(36) is 9 + 5

√
8. So, one class of almost 4-circular balancing numbers can be found from

yn +
√

8xn = (9 + 5
√

8)(3 +
√

8)n−1,

for n = 1, 2, . . .. Hence, the nth member in this class is given by

xn =
(9 + 10

√
2)(3 + 2

√
2)n−1 − (9− 10

√
2)(3− 2

√
2)n−1

4
√

2
,

for n = 1, 2, . . .. This can be expressed as xn = 15Bn − 6Bn−1. The other family of solutions is
given by x′n = 6Bn+1 − 15Bn.

We can again recursively calculate these solutions using the recurrence relations

xn+1 = 6xn − xn−1, x
′
n+1 = 6x′n − x′n−1,

and
xn+1 = 6xn − xn−1, x

′
n+1 = 6x′n − x′n−1,

with initial values x0 = 4, x1 = 9, x′0 = 9, x′1 = 4, x0 = 6, x1 = 15, x′0 = 15, x′1 = 6. Thus, we have
proved the following theorem.

Theorem 5.1. The almost 4-circular balancing numbers are the solutions in x of the generalized
Pell’s equation y2 − 8x2 = −119 and are partitioned into four classes given by xn = 4Bn − 9Bn−1,
x′n = 9Bn+1 − 4Bn, xn = 15Bn − 6Bn−1 and x′n = 6Bn+1 − 15Bn for n = 1, 2, . . .. They satisfy
the recurrence relations xn+1 = 6xn − xn−1, x′n+1 = 6x′n − x′n−1, xn+1 = 6xn − xn−1, x′n+1 =
6x′n − x′n−1,, with initial values with initial values x0 = 4, x1 = 9, x′0 = 9, x′1 = 4, x0 = 6, x1 =
15, x′0 = 15, x′1 = 6.

6 Almost k Circular Balancing Numbers

By the definition, a natural number x is an almost k-circular balancing number if and only if
8x2 − 8k2 + 9 is a perfect square, say some y2. This means that to characterize this class of
numbers, we have to solve the following generalized Pell’s equation

y2 − 8x2 = −8k2 + 9 (37)

A fundamental solution of equation (37) is 3 + k
√

8. So, one class of almost k-circular balancing
numbers can be found from

yn +
√

8xn = (3 + k
√

8)(3 +
√

8)n−1,



66 Manjil P. Saikia

for n = 1, 2, . . .. Hence, the nth member in this class is given by

xn =
(3 + 2k

√
2)(3 + 2

√
2)n−1 − (3− 2k

√
2)(3− 2

√
2)n−1

4
√

2
,

for n = 1, 2, . . .. This can be expressed as xn = kBn − (3k − 3)Bn−1, where we use the Binet form
for balancing numbers from [1], for n = 1, 2, . . ..

Further, we can conclude that x′n = (3k− 3)Bn+1− kBn is another class of solutions for almost
k-circular balancing numbers. We can in fact recursively calculate these solution classes using the
recurrence relations

xn+1 = 6xn − xn−1

and
x′n+1 = 6x′n − x′n−1,

with initial values x0 = 3k − 3, x1 = k, x′0 = k, x′1 = 3k − 3. Thus, we have proved the following
theorem.

Theorem 6.1. The almost k-circular balancing numbers are the solutions in x of the generalized
Pell’s equation y2− 8x2 = −8k2 + 9 and we can always get at least two classes of solution families,
given by xn = kBn− (3k− 3)Bn−1 and x′n = (3k− 3)Bn+1− kBn for n = 1, 2, . . .. They satisfy the
recurrence relations xn+1 = 6xn−xn−1 and x′n+1 = 6x′n−x′n−1, with initial values x0 = 3k−3, x1 =
k, x′0 = k, x′1 = 3k − 3.

7 d-sub Circular Balancing Numbers

We can actually extend our Definition 1.3 into a more general class of numbers, as below.

Definition 7.1. Let k and d be fixed positive integers. We call a positive integer n, a d-sub k-
circular balancing number if the Diophantine equation

(k + 1) + (k + 2) + · · ·+ (n− 1) + d = (n+ 1) + (n+ 2) + · · ·+m+ (1 + 2 + · · ·+ k − 1)

holds for some natural number m. If d < 0, then we call such numbers d-super circular balancing
numbers.

Clearly, if d = 1, then we have the almost circular balancing numbers. This type of numbers might
be worth a self-study, moreover they can give further results like the following representative ones.

Theorem 7.2. If D = k2 + 1, then the D-subbalancing numbers are the d-sub k circular balancing
numbers for d = −1.

Theorem 7.3. The −2-sub 2-circular balancing numbers are the solutions in x of the generalized
Pell’s equation y2 − 8x2 = −47 and are partitioned into two classes given by xn = 9Bn − 4Bn−1

and x′n = 4Bn+1 − 9Bn for n = 1, 2, . . .. They satisfy the recurrence relations xn+1 = 6xn − xn−1

and x′n+1 = 6x′n − x′n−1, with initial values x0 = 4, x1 = 9, x′0 = 9, x′1 = 4.

We leave the proofs of the above two results to the reader. We also believe that the following
result is true, which we state as a conjecture.
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Conjecture 7.4. There are no D-subbalancing numbers, if D = 4k2 + 1 for some natural number
k. In other words, there are no −1-sub k-circular balancing numbers if k is even.

We close this paper with the remark that, several types of generalized perfect numbers have
been studied by various authors (see [3] and the references within). It might be interesting to adapt
some of these type of numbers into the balancing numbers setting.
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Abstract. In this article we will learn in short about game theory with special reference to coop-
erative games. It will be followed by an introduction to a cooperative game called supermodular
games. By making use of the solution concept called core of a game, we will go through some impor-
tant results on supermodularity. We will wind up the article with an introduction to decomposable
games followed by its necessary and sufficient condition for supermodularity.
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1 INTRODUCTION

Game theory can be defined as the study of mathematical models of strategic interactions which
may include cooperation and conflict between the rational decision makers [CMS15].It provides
mathematical techniques for examining situations where two or more than two individuals/players
make decisions for each other’s benefit. In other words game theory analyses situations where the
decisions of the participating players make impact on each other’s payoff or interests which may
be oblivious to the participants in some cases. As mentioned, game theory deals with situations
where rational decision makers interact and try to get fruitful outcomes from own’s point of view, so
Aumann [Aum87] suggested ”Interactive Decision Theory” as an alternative term to game theory.
In game theory we call the participating individuals/groups as players. We basically make two
assumptions about the players, rational and intelligent [Mye97]. Rationality here means that the
player is aware with the rules of the game along with the outcomes. Game theory is widely used
in day to day life. Major applications of game theory is in the field of economics, political science,
diplomacy, computer science, biology, psychology etc. Remarkable research works have been carried
out throughout the world in the fields mentioned above using the concept of game theory by which
one can expect optimal results.

Use of game theory in ancient time can be conceived from the problem of three widows, which
is included in the Babylonian Talmud [Wal12], the foundation book of Jewish religion as well as
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its civil and criminal law during 0− 500 AD. A theorem on game theory which is considered to be
the first formal work in this field was developed in 1913 by Zermelo, popularly known as Zermelo’s
Theorem [Zer13]. The theorem asserted that in the game of chess either white has a winning
strategy or black has or each of them can always enforce a draw. Modern game theory began
with the two-person zero-sum game developed by von Neumann [vN28] in 1928, where loss of one
person is gain for the other and vice-versa, further it was followed by a seminal book “The Theory
of Games and Economic Behaviour” authored by von Neumann and Morgenstern [vN28] in 1944,
which is regarded as the pioneer book in the field of game theory. This book persuaded many young
researchers and academicians to work extensively in the field of game theory and its applications.
One researcher who contributed significantly in the field of game theory was John Nash, who in the
early of 1950s initiated the game theoretic approach of study of bargaining along with the popular
equilibrium called “Nash Equilibrium” [Nas50]. In 1950, Melin Dresher and Merill Flood carried
out a work under the aegis of Rand Corporation leading to milestone problem known as Prisoner’s
Dilemma [Pet08]. L Shapley in 1953 gave a solution concept in a cooperative game with n players,
known as Shapley Value [Sha53], further Gillies [Gil59] in 1959 suggested the core of cooperative
games as a general solution concept.
Based on the conditions and rules of dealings, we consider three major classes in game theory
[Wal12].

• Games in extensive form (tree games):

• Games in strategic form.

• Games in coalitional form.

The first two classes of games belong to non-cooperative games and the third class belongs
to cooperative games. Non-cooperative games are those where action of each individual player
is primitive. It is not fair to say that non-cooperative game is applicable only in the situation of
conflicts, in fact it is just that each individual player and the preferences of the player provide the
basic modelling unit. Some well known examples of non-cooperative games are [Pet08]-

• The battle of the Brismarck Sea.

• Matching Pennies.

• Prisoner’s dilemma.

• Battle of Sexes.

Cooperative games are based on cooperation or coalition among the players of the game unlike
in non-cooperative games, where there is no cooperation or alliances between the players of the
game. Thus in cooperative we observe competition among the coalitions in the set of players rather
than competition among the players. Cooperative games are further categorized into two parts,
games with transferable utility (TU-games) and games with non-transferable utilities(NTU-
games). In transferable utility game, we assign a value to each possible coalition within the game
whereas in the other type, the opportunities available at the disposal of a coalition is represented by
a set of utility vectors instead of a single number/formula. Once the value of a coalition is obtained
in a TU-game, a natural question arises as how to distribute the profit amongst the players such
that the distribution is fair and rational as per each player’s contribution in the game. For this, we
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intuitively go for a solution concept, specially the core, which consists of payoff vectors satisfying
some conditions discussed later in the study. In our study here, focus will be on a special type
of TU-game called as the Supermodular/convex games. Concept of supermodular games was
introduced by Shapley [Sha71] in 1971, where the inceptive for joining a bigger coalition for any
player was maximised. The work on supermodularity of a game was further carried out keeping in
mind about the solution concept by Topkis [Top78] in 1978.

2 Preliminaries

Before learning about supermodular games, we will go through some basic definitions and results
to be used in the later part of our study. Throughout the study set of all n players will be denoted
by N = {1, 2, ..., n}.

Definition 2.1. [CMS15] A cooperative game in characteristic function form is an ordered pair
(N, v), where N = {1, 2, ..., n} is the set of all players and function v : 2N → R is the characteristic
function which assigns each subset (coalition) of N a real value.

For each coalition S ⊆ N , the value v(S) is called worth of the coalition or coalitional value for
S.

Definition 2.2. [CMS15] In a cooperative game (N, v), for any subset M ⊆ N , the game (M,v)
involving only the players of coalition M with respect to the same characteristic function v is called
as subgame of (N, v).

Definition 2.3. [CMS15] A cooperative game (N, v) is said to be super-additive if v(S)+v(T ) ≤
v(S ∪ T ) for all coalitions S and T of N such that S ∩ T = φ.

Definition 2.4. [CMS15] A cooperative game (N, v) is said to be sub-additive if v(S) + v(T ) ≥
v(S ∪ T ) for all coalitions S and T of N such that S ∩ T = φ.

Equivalently a cooperative game (N, v) is said super-additive if (N,−v) is sub-additive and
vice-versa.

Definition 2.5. [CMS15] A cooperative game (N, v) is said to be additive if v(S)+v(T ) = v(S∪T )
for all coalitions S and T of N such that S ∩ T = φ.

Definition 2.6. [CMS15] In a cooperative game (N, v), marginal contribution of player i ∈ N
with respect to a coalition S is the the value v(S ∪ {i})− v(S), where i ∈ N \ S

Definition 2.7. [Pet08] A cooperative game (N, v) is said to be monotonic if v(S) ≤ v(T ) when-
ever S ⊆ T ⊆ N .

As mentioned in the beginning, if the players in set N with respect to the game (N, v) decide
to work together, then a natural question arises as how to distribute the coalitional value among
them so that the division is fair enough to everyone. In such cases we go for a solution vector as
defined below.

Definition 2.8. [Pet08] For a cooperative game (N, v), an allocation vector or a payoff vector
is an n-coordinated vector x = (x1, x2, ..., xn),
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xi in the payoff vector above is the amount received by player i. Further for any coalition
S ⊆ N, x(S) is the sum of the payoffs received by players of the coalition S. That is x(S) =

∑
i∈S xi.

Definition 2.9. [Pet08] In a cooperative game (N, v), a payoff vector x is said to be individually
rational if xi ≥ v({i}).

Definition 2.10. [CMS15] In a cooperative game (N, v), a payoff vector x is said to be collective
rational if x(S) ≥

∑
i∈S xi for all S ⊆ N .

Definition 2.11. [CMS15] In a cooperative game (N, v), a payoff vector x is said to be totally
rational or pareto efficient if x(S) = v(N).

In a cooperative game (N, v), pre-imputation [CMS15] set is the collection of all pareto payoff
vectors, further imputation is the set of all pareto and totally rational vectors. Now we are
in a position to introduce the concept of core which will be an important tool to determine the
supermodularity of a game.

Definition 2.12. [CMS15] In a cooperative game (N, v), a payoff vector x is said to be in the core,
if x is totally and collective rational. Further the collection of all such vectors is called core of the
game and is denoted by c(v). That is c(v) = {x ∈ Rn : x(S) ≥ v(S), x(N) = v(N);S ⊆ N}

[CMS15] The Shapley value is an interesting solution concept in a cooperative game. Choosing
a particular solution concepts becomes an ambiguous work as it may not seem reasonable to many
players. Shapley [Sha53] characterised a unique solution using a collection of intuitively reasonable
axioms.

Definition 2.13. [CMS15] In a cooperative game (N, v), the Shapley Value φ is the solution

(φsh1 , φsh2 , ..., φshn ), where φshi =
∑
S⊆N\{i}

|S|!(|N |−|S|−1)!
|N |! [v(S ∪ {i}) − v(S)] for all coalitions S in

N .

Another way to calculate the Shapley value is by using the permutations of the player set N
as average of the marginal vectors of the game. That is φshi = 1

|N |!
∑
π∈Πm

π, where Π is the

collection of all permutations of N and mπ is the marginal contribution of playeri with respect to
all coalitions. It is to be noted here that the Shapley value is unique.

3 Supermodular Games

In this section we will study about supermodular games followed by some important results based
on the supermodularity of a cooperative game using greedy algorithm. Further we will study de-
composable games and the criteria for its supermodularity.

Definition 3.1. [Top98] A Cooperative game with transferable utility or simply TU game (N, v)
on the set of players N = {1, 2, ...., n} is said to be supermodular or convex if v(S) + v(T ) ≤
v(S ∪ T ) + v(S ∩ T ) for all subsets S and T of N .

Before discussing various examples and results based on the game defined above we will prove
an important result which allows us to prove the supermodularity of a game in more than a way.
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Theorem 3.2. [Sha71] A game (N, v) is supermodular if and only if v(S ∪ {i}) − v(S) ≤ v(T ∪
{i})− v(T )) for all subsets S and T of N such that S ⊆ T ⊆ N and iεN \ T.

Remark: From now onwards, we can use any one of the following ways to establish the super-
modularity of a cooperative game.

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T )

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ))

v(S ∪ {i})− v(S) ≤ v(S ∪ {i, j})− v(S ∪ {j}),

where S, T ⊆ N and i,j are players.
Supermodularity of a game tries to persuade its players for a bigger coalition as from the

definition itself it is clear that for higher coalitions the outcome is maximised. There are many
practical examples of supermodularity out of which some popular examples are:

• The Airport Profit Game [Top98].

• The Bankruptcy Game [CMT87].

• The Monopoly Firm Game [Top98].

For a permutation π of set N , consider the set S(π, j) = {π(1), π(2), ..., π(j)} for j = 1, 2, ..., n.
Let Π be the collection of all permutations of the set N , then for π ∈ Π, x(π) is the payoff
vector generated by the greedy algorithm [Top98] with permutation π defined as x(π)π(i) =
v(S(π, i)) − v(S(π, i − 1)) for all i ∈ N . In simple words, for a given permutation π, greedy
algorithm with permuatation π gives the marginal contribution of player π(i) with respect to the
coalition S(π, j) = {π(1), π(2), ..., π(j)}.
Theorem below shows that the the payoff generated by the greedy algorithm is in the core in a
supermodular game also the Shapley value.

Theorem 3.3. [Sha53] Suppose (N, v) is a supermodular game.
(a) For each permutation π of the set of players N , the payoff vector y(π) generated by the

greedy algorithm is in the core.
(b) The core is non empty.
(c) The shapley value is in the core.

Lemma discussed below shows us a result where the sum of the payoffs generated by greedy
algorithm is equal to the value of the game in a coalition where the elements are arranged in the
order π(n), π(n− 1), ..., π(1).

Lemma 3.4. [Sha53] Suppose that (N, v) is a supermodular game, π is any permutation of players
N , and x(π) is the payoff vector generated by the greedy algorithm with the permutation π. Then

(a)
∑
i∈S(π,j) x(π)i = v(S(π, j)) for j = 1, 2, ..., n.

(b)x(π) simultaneously maximises
∑
i∈N\S(π,j) x(π)i for j = 1, 2, ..., n over all payoff vectors x

in the core.
(c) x(π) lexicographically maximises (xπ(n), xπ(n−1), ..., xπ(1)) over all payoff vectors x in the

core.
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As of now, we studied the payoff vectors generated by greedy algorithm using permutation of
the set of players. Lemma below gives the necessary and sufficient condition for the uniqueness of
the payoff vectors generated by the greedy algorithm.

Lemma 3.5. [Sha53] For a supermodular game (N, v),the characteristic function v(S) is strictly
supermodular on P (N) if and only if the n! payoff vectors generated by the greedy algorithm with
the n! different permutations of the players of N are distinct.

Theorem below shows the converse of Theorem 3.3, that if every payoff vector generated by the
greedy algorithm wit different permutations of N is in the core, then the game is supermodular. In
other words we have another criteria to prove the supermodularity of a game provided the payoff
vectors generated by the greedy algorithm is in he core.

Theorem 3.6. [Ich81] If (N, v) is a cooperative game and the payoff vector generated by the greedy
algorithm for each permutation of the payers is in the core, then the cooperative game (N, v) is a
supermodular game.

Let us recall that extreme point in a set is a point which cannot be represented as convex
combination of any two other points of the set. Theorem below gives us a condition when a payoff
vector becomes an extreme point of the core.

Theorem 3.7. Consider a supermodular game.
(a)[Sha53] A payoff vector is an extreme point of the core if and only if it is generated by the greedy
algorithm with some permutation of the set of players.
(b)[Top98] A payoff vector is an extreme point of the core if and only if it is a convex combination
of (at most n+1) payoff vectors generated by the greedy algorithm with some permutation of the set
of players.

4 Supermodularity of Decomposable Games

Here we are going to introduce another type of cooperative game called decomposable and will
analyse the relation between decomposable and supermodular game.

Let {N1, N2, N3, ..., Np} be a partition of the set of players N such that p ≥ 2. Then a game
(N, v) is said to be decomposable [Sha71] with respect to the partition P , if v is additive across
the partition P . That is v(S) = v(S ∩N1) + v(S ∩N2) + ....+ v(S ∩Np), for all S ⊆ N . The game
above is completely determined by its value on the subsets Ni of N is called as components of
the decomposition.

Theorem below proves the necessary and sufficient condition for a decomposable game to be
supermodular.

Theorem 4.1. [Sha71] (a)A decomposable game is supermodular if and only if each component is
supermodular.
(b) A supermodular game is decomposable if and only if v(N) = v(N1)+v(N2)+v(N3)+ ...+v(Np)
holds for some partition {N1, N2, N3, ..., Np} of N into p ≥ 2 nonempty subsets.

Corollary 4.2. [Sha71] A strictly supermodular game is indecomposable.
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Conclusion: In this article we have discussed about the supermodularity of a cooperative
game. We learned about the greedy algorithm with respect to a given permutation of the set
of players. Further with the use of the greedy algorithm, we learned to analyse the core of a
supermodular game and tried to figure out the game in the other way around. Finally we ended up
with an introduction to decomposable games followed by its necessary and sufficient condition for
supermodularity. The topic is interesting from both theoretical and practical point of view. Using
the notion of supermodularity, many games can be further analysed and suitable results can be
obtained for an easy access to the solution concepts like core, the Shapley value etc.
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1 Introduction

The concept of statistical convergence is introduced by H Fast [6] in 1951 and from then several new
type of convergence of sequences appeared, many of them are related to statistical convergence. In
2000 Šalát and Kostyrko introduced I-Convergence in [11] and the concept of I-convergence gives
a unifying approach to these type of convergence.
The idea of I-convergence has been extended from real number space to metric space and many
other spaces in recent works. Later B. K. Lahiri and P. Das extended this idea to an arbitrary
topological space in [1] and observes that the some properties are preserved in a topological space.
In 2008, they also introduced the idea of I-convergence of Nets in [2] a topological space.
The recent advancements in ideal convergence theory ask for some preliminaries.

Definition 1.1. Let I be an ideal defined on N where ideals are collection of subsets of N closed
under finite unions and subsets and containing atleast the finite subsets of N.

. Fin and I0 are two basic ideals defined as follows:

Fin = collection of all finite subsets of N.
I0= Subsets of natural number with density 0.

A ∈ Id if and only if limsupn→∞
|A∩{1,2,...,n}|

n = 0.
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If we consider an ideal I in P(N), two additional subsets of P(N) namely I∗, I+ occurs.
We denote I∗ = {A ⊂ N : Ac ∈ I}, the filter dual of I and I+= collection of all subsets which
doesn’t belongs to I.

Remark 1.2. Clearly, I∗ ⊂ I+.

Definition 1.3. [12] Let X be a topological space. Then, a sequence x = (xn) is said to be I-
convergent to ξ, shortened with xn →I ξ, whenever {n : xn ∈ U} ∈ I for all neighborhoods U of
ξ.

Remark 1.4. i.e (X,T, I) doesn’t corresponds to (X, T
′
, Fin).

Note 1.5.

Fin- convergence is essentially called general convergence.

If I = I0 then this mode of convergence is called the Statistical convergence. Beginning with Fast[6],
Salat[4], Tripathy [13], Kostyrko[12] and many renowned researcher has been pushing this topic into
the depth of advancement.

Example 1.6. I-convergence doesn’t corresponds to topology[10]; Assume I 6= Fin and
(X,T ) is topological space, where |X| ≥ 2 and T is not trivial topology T0. Let l ∈ I \ Fin. Here I
is infinite. Fix distinct a, b ∈ X and define the sequence (xn) by xn = a whenever n /∈ l and xn = b
otherwise.
It follows that xn →I a in (X,T ). let us assume, for the sake of contradiction, there exists a
topology T ′ such that xn → a in (X,T ′). If there is a T ′-neighborhood U of a such that b /∈ U , then
{n : xn /∈ U} = I. This is impossible, since l is not finite. Hence b ∈ U . Hence b ∈ U whenever
a ∈ U . By the arbitrariness of a and b, we conclude that T ′ = T0. The converse is false: given
U ∈ T \ T0 and u /∈ U , then the constant sequence (u) is not I-convergent to l provided that l ∈ U .

Given a topological space (X,T ) and an ideal I, define the family as

T (I) := {F c ⊂ X : F =
⋃
x∈F ′ Cx(I)}

that is, F is T (I)-closed if and only if it is the union of I-cluster points of F -valued sequences. In
particular, it is immediate that T = T (Fin).

Lemma 1.7. T ⊂ T (I).[10]

Interestingly, The following theorem in the article [10] by Leoneti, ensures the equality with
certain condition on X.

Theorem 1.8. Assume that one of the following conditions holds:

• X is sequentially strongly Lindelof and I is a P -ideal;

• X is first countable.

Then T = T (I).

Statistical limit points and statistical cluster points (i.e., I0-limit points and I0-cluster points,
resp.) of real sequences were introduced by Fridy as in [12]. Similarly I-cluster point and I-limit
point set is defined in [4, 12].
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Definition 1.9. let Cx(I) denote the set of I-cluster points of x, that is, the set of all ξ ∈ X such
that {n : xn ∈ U} ∈ I+ for all neighborhoods U of ξ

Definition 1.10. y ∈ X is called an I-limit point of x if there exists a set M = {m1 < m2 < ...} ⊂ N
such that M /∈ I and limk→∞xmk = y.

Many other results has been established in this decade from statistical background to Ideal
theory which can be found in [5, 7, 9]

Lemma 1.11. [10] Let x and y be sequences taking values in a topological space X and fix ideals
I ⊂ J . Then:

• Lx(J) ⊂ Lx(I) and Cx(J) ⊂ Cx(I);

• Lx(Fin) = Cx(Fin), provided X is first countable;

• Lx(I) ⊂ Cx(I);

• Cx(I) is closed;

• Lx(I) = Ly(I) and Cx(I) = Cy(I) provided x =I y;

• Cx(I) ∩K 6= φ, provided K ⊂ X is compact and {n : xn ∈ K} ∈ I+;

• Lx(I) = Cx(I) = {l} provided xn →I′ l and X is Hausdorff.

.

I- limit point and I-cluster point seems related by their very definition. Cx(I) is a closed set in
X and It is characterized in [4] as follows:

Theorem 1.12. Let I be an admissible ideal.
(i) The set Cx(I)is closed in X for each sequence x = {xn} of elements of X.
(ii) Suppose that (X,T ) is a separable metric space. Suppose that there exists a disjoint sequence of
sets {Mn} such that Mn ∈ N and Mn /∈ I for n ∈ N. Then for each closed set F ∈ X there exists
a sequence x = {xn} of elements of X such that F = Cx(I).

Now, we are getting a characterization of Cx(I) with closed sets in X under some suitable con-
ditions in The space X and I.Similar Results for Lx(I) can be expected. Results came in favour of
Fσ sets in X. For this, some basics need to be revisited as follows :

Definition 1.13. [7] An ideal I is said to be a P -ideal (or said to satisfy condition (AP)) if for
every sequence (An)n ∈ N of elements of I there exists A∞ ∈ I such that An \ A∞ is a finite set
for every n ∈ N .

After identifying the power set P (N) of N with the Cantor space C = {0, 1}N in a standard
manner we may consider an ideal as a subset of C. In particular, an ideal I is analytic if it is a
continuous image of a Borel subset of a Polish space.

Definition 1.14. [7] Let S be a set.
We say that a map Ψ : P (S)→ [0,∞] is a sub measure on S if it satisfies the following conditions:
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• Ψ(Φ) = 0 and ψ(s) <∞ for every s ∈ S,

• Ψ is monotone: if A ⊂ B ⊂ S, then Ψ(A) ⊂ ψ(B),

• Ψ is subadditive: if A,B ⊂ S, then ψ(A ∪B) ≤ Ψ(A) + Ψ(B).

A sub measure Ψ on N is lower semi continuous if for every A ⊂ N we have

Ψ(A) = limn→∞Ψ(A ∩ [1, n]).

In article by Das[7], Characterization of Fσ set with Lx(I) was established. Here we have the
result:

Theorem 1.15. Let X be a first countable space. For any sequence (xn)n∈N in X the set Lx(I) is
an Fσ -set provided I is an analytic P -ideal.

Theorem 1.16. [7] Let X be a space with hcld(X) = ω. Then for each Fσ -set A in X there exists
a sequence x = (xn)n∈N in X such that A = Lx(I) provided I is an analytic P -ideal.

According to the article [7], an ideal I is Fσ if and only if there exists a lower semi continuous
sub measure Ψ such that I = {A ⊂ N : Ψ(A) <∞}, with Ψ(N) =∞.

Theorem 1.17. [14] Let x = (xn) be a sequence taking values in a first countable space X and let
I be an Fσ-ideal. Then Lx(I) = Cx(I). In particular, Lx(I) is closed.

Combine scenario for analytic P -ideals, the property that the set of I-limit points is always
closed, characterizes the subclass of Fσ-ideals:

Theorem 1.18. [14] Let X be a first countable space which has a non-isolated point. Let also IΨ
be an analytic P -ideal. Then the following are equivalent:

• Iσ is also an Fσ-ideal;

• Lx(I) = Cx(IΨ) for all sequences x;

• Lx(IΨ) is closed for all sequences x;

• there does not exist a partition {An : n ∈ N} of N such that ||An||Ψ > 0 for all n and
lim

⋃
k>n ||Ak||Ψ = 0.

Above theorem can be found in article [ideal relationship].
As defined a topological space X is said to be locally compact if for every x ∈ X there exists a
neighborhood U of x such that its closure U is compact,

Theorem 1.19. Let x = (xn) be a sequence taking values in a locally compact first countable space
and fix an analytic P -ideal IΨ. Then each isolated IΨ-cluster point is also an IΨ-limit point.

Definition 1.20. A set S is discrete in a larger topological space X if every point x in S has a
neighborhood U such that S ∩ U = {x}.
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following results is a direct implication of above theorem:

Corollary 1.21. Let x be a real sequence for which Cx(I) is a discrete set. Then Lx(I) = Cx(I).

Following theorem is a kind of converse of theorem 1.17 can be found in recent publication
by Leonetti[14].

Theorem 1.22. Let X be a separable metric space and fix sets A ⊂ B ⊂ C ⊂ X such that A is an
Fσ-set and B,C are closed sets such that the set S of isolated points of B is contained in A and
F := B \ S. is non-empty. Moreover, assume that there exists an atomless strictly positive Borel
probability measure µF : B(F )→ [0, 1]. Then there exists a sequence x taking values in X such that
Lx(I) = A, Cx(I) = B, and Lx(Fin) = C.

Theorem 1.23. [14] Let X be a first countable space where all closed sets are separable and let
I 6= Fin be an Fσ-ideal. Fix also closed sets B, C ⊂ X such that φ 6= B ⊂ C. Then there exists a
sequence x such that Lx(I) = Cx(I) = B and Lx(Fin) = C.

It will interesting to consider the topological nature of the set of I-limit points when I is neither
Fσ- nor analytic P -ideal. It is exciting that there exist an ideal I and a real sequence x such that
Lx(I) is not an Fσ-set. One can find it in [14] by Leonetti.
Lastly, An open question arise in this context mentioned in [14] by leonetti as follows:

whether there exists a real sequence x and an ideal I such that Lx(I) is not Borel measurable.
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1 Introduction

In the branch of operator theory, shift operators are a class of very widely and extensively studied
linear operators on Hilbert spaces. These operators are of fundamental importance in many parts of
operator theory. The unilateral shift is not just an isometry, but it is a fundamental building block
out of which all isometries are constructed. Some of the adequate and comprehensive references are
[Fil], [Nik], [Sar74], [JW07] and [Shi74]. The shift operators have many interesting properties, both
analytic and algebraic and even though the properties may not have immediate visible application,
still they prove to be very valuable.

We begin with the introduction of the unilateral shift operator on a separable Hilbert space H.
Let {en}∞n=0 be an orthonormal basis of H. Then the operator U defined by

Uen = en+1 forn = 0, 1, 2, . . .
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is called the unilateral shift operator on H.
Its adjoint operator is given by

U∗e0 = 0, and U∗en = en−1 forn = 1, 2, 3, . . .

and is called the backward unilateral shift operator. The matrix representation of U with respect
to the orthonormal basis {en}∞n=0 is

0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
· · · · ·
· · · · ·
· · · · ·


and that of U∗ is 

0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
0 0 0 0 · · ·
· · · · ·
· · · · ·
· · · · ·


.

The unilateral shift operator is injective but not surjective, while its adjoint, the backward uni-
lateral shift is surjective but not injective. Recall that a bounded linear operator T on a Hilbert
space H is called an isometry if ‖Tx‖ = ‖x‖ for all x in H. Hence, the unilateral shift is an isometry.

The unilateral shift motivated the study of the unilateral weighted shift operators. For a se-
quence of complex numbers {wn}∞n=0, the unilateral weighted shift operator T is defined on the
Hilbert space H as

Ten = wnen+1 forn = 0, 1, 2, . . .

The scalars wn are called the weights of the shift operator T . For better understanding, we further
define the unilateral weighted shift on the familiar Hilbert space `2+(C). Let C denote the complex
plane and N0 denote the set of non-negative integers. The space `2+(C) is defined as follows:

`2+(C) := {x = (x0, x1, . . . ) : xi ∈ C,
∑
i∈N0

|xi|2 <∞}.

For a bounded sequence of non-zero scalars {αn}n∈N0
, the unilateral weighted shift T is defined

on `2+(C) as

T (x0, x1, . . . ) = (0, α0x0, α1x1, . . . ).

Its adjoint T ∗ is given by

T ∗(x0, x1, . . . ) = (ᾱ0x1, ᾱ1x2, . . . )
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and is called the backward unilateral scalar weighted shift with weight sequence {ᾱn}n∈N0 .

Similarly, we can define the bilateral scalar weighted shift on the sequence space `2(C), where

`2(C) := {x = (. . . , x−1, [x0], x1, . . . ) : xi ∈ C,
∑
i∈Z
|xi|2 <∞}.

Then for a sequence of non-zero scalars {αn}n∈Z, the bilateral weighted shift W is defined on
`2(C) as

W (. . . , x−1, [x0], x1, . . . ) = (. . . , α−2x−2, [α−1x−1], α0x0, α1x1, . . . ).

Its adjointW ∗ is called the backward bilateral weighted shift. Here, [·] in x = (. . . , x−1, [x0], x1, . . . )
denotes the central 0th entry of x.

2 Reducing and minimal reducing subspaces

We are mainly concerned about the reducing and minimal reducing subspaces of the shift operators.
Hence, we first recall the concerned definitions.

Definition 2.1. A subspace M of a Hilbert space is called an invariant subspace under an operator
T if T (M) ⊆M .
If a subspace M is invariant under both T and its adjoint T ∗, then M is said to be a reducing
subspace for T .
A reducing subspace M is said to be a minimal reducing subspace if it does not contain any proper
non zero reducing subspace.

We shall now discuss some of the significant results till date in the context of invariant, reducing
and minimal reducing subspaces of the shift operators.

In 1949, Beurling [Beu49] explicitly described all the non zero invariant subspaces of the uni-
lateral shift as subspaces of H2. The space H2 is the Hilbert space of all analytic functions having
power series representations with square summable complex coefficients.

Theorem 2.2. Beurlings theorem : Every invariant subspace of the unilateral shift other than 0
has the form ϕH2, where ϕ is an inner function.

It must be noted that the unilateral shift operator has in fact no proper reducing subspaces. In
an attempt to study more about the properties of these shift operators, the scalar weights were re-
placed by operator weights and by doing this, a new class of operators called the operator weighted
shifts were introduced.

In 1967, N.K. Nikolskii [Nik67] introduced operator weighted shifts as a generalization of scalar
weighted shifts. Let K be a separable complex Hilbert space and `2+(K) be defined as the orthogonal
sum of ℵ0 copies of the Hilbert space K with a scalar product defined by

〈f, g〉 =
∑
n∈N0

〈fn, gn〉,
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for f = (f0, f1, . . . ) ∈ `2+(K), and g = (g0, g1, . . . ) ∈ `2+(K).

Considering {An}n∈N0
to be a uniformly bounded sequence of linear operators onK, the operator

S on `2+(K) defined as

S(f0, f1, . . . ) = (0, A0f0, A1f1, . . . )

is called an unilateral operator weighted shift with weights {An}n∈N0
. Clearly, S is bounded and

‖S‖ = supn ‖An‖.

As in the case of scalar shifts, considering each An as the identity operator, unweighted unilateral
operator shifts are defined as

S+(f0, f1, . . . ) = (0, f0, f1, . . . ).

It is an important fact that operator shifts are not just a formal generalization of scalar shifts.
For instance, with the help of an operator weighted shift, Pearcy and Petrovic [PP94] proved that
an n-normal operator is power bounded if and only if it is similar to a contraction. Since its in-
troduction, operator weighted shifts have been widely studied. For a general understanding of its
various properties we refer the following: [Bou06, Gel69, Her90, Jab04, Lam71, LS01, Nik67].

In his paper [Nik67], Nikol’skii considered unilateral operator weighted shifts in the form of S+R
operating on the Hilbert space `2+(K). Here S+ is a unilateral unweighted operator shift and R is a
multiplication operator. He deduced significant results relating to invariant and reducing subspaces
of operator weighted shifts. A few of the important ones are stated below:

Lemma 2.3. [Nik67] Let T be a bounded operator in the Hilbert space K, and let T = V R, where
V is an isometric operator and R is a selfadjoint operator. In addition, let the operator R be one-
to-one. For the subspace L of H to reduce T , it is necessary and sufficient that L reduces both V
and R.

Using the above lemma, Nikol’skii proved the following important result.

Theorem 2.4. [Nik67] Let T = S+R be an operator in `2+(K). Here, R is a multiplication operator
defined as RX = R(X0, X1, . . . ) = (R0X0, R1X1, . . . ), where the Ri’s are self adjoint and one-to-
one operators in K for each i ∈ N0. Then all reducing subspaces of T are of the form L̂ = {X =
(X0, X1, . . . ) ∈ `2+(K) : Xi ∈ L, i ∈ N0}, where L is a closed subspace of K such that L is invariant
under each Ri.

In 1971, Lambert [Lam71] worked on operator weighted shifts on `2+(K) with invertible and
bounded operator weights. He considered a sequence of invertible bounded linear operators {An}∞n=0

on K and defined the operator weighted shift S using these weights. He denoted this operator
weighted shift as S ∼ 〈An〉. In this case, S is called an invertibly weighted shift. He established
necessary and sufficient conditions for the unitary equivalence of two such shifts, and also intro-
duced some significant results on reducing subspaces of invertibly weighted shifts. We shall give a
brief discussion on his paper.

Let S ∼ 〈An〉 be an invertibly weighted shift on the Hilbert space `2+(K). We construct a
sequence {Sn}∞n=0 of operators as S0 = I and Sn = AnAn−1 . . . A0, n ≥ 1, where I is the identity
operator on K. Note that each Sn is an invertible operator on K and Sn+1 = An+1Sn.
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Lemma 2.5. [Lam71] Let S ∼ 〈An〉 be an invertibly weighted shift on the Hilbert space `2+(K). If
M is a reducing subspace of S, then M =

∑∞
n=0⊕SnM0 for some subspace M0 of K.

In the above lemma, we must see that for any subspace M0 of K , M =
∑∞
n=0⊕SnM0 is an

invariant subspace for S, but it is not necessary that it is also reducing. The following result gives
us a necessary and sufficient condition for a subspace to be reducing for S.

Theorem 2.6. [Lam71] Let S ∼ 〈An〉 be an invertibly weighted shift on the Hilbert space `2+(K).
Let M =

∑∞
n=0⊕SnM0 be a subspace of l2+(K). Then the following statements are equivalent:

(i) M is a reducing subspace of the shift S.
(ii) SnM0 is invariant for A∗n+1An+1, n = 0, 1, 2, . . . .
(iii) (SnM0)⊥ = Sn(M⊥0 ), n = 0, 1, 2, . . . .
(iv) S∗nSnM0 = M0, n = 0, 1, 2, . . . .

Lambert proved an important corollary for this theorem. Let L(K) denote the algebra of all
bounded linear operators on K. For an invertibly weighted shift S, let T (S) denote the weakly
closed∗ subalgebra of L(K) that is generated by {S∗nSn}∞n=0.

Corollary 2.7. [Lam71] The lattice of the reducing subspaces of the invertibly weighted shift opera-
tor S is isomorphic to the lattice of T (S). In particular S is irreducible if and only if T (S) = L(K)
.

Later in 1985, Guyker [Guy85] extended this study and established a reducibility criterion for
bilateral operator weighted shifts with commuting normal operator weights.

In this line of study, a very interesting work was done by Stessin and Zhu in 2002. In their
paper [SZ02], they considered a weighted unilateral shift operator S, with finite multiplicity N > 1
on the Hilbert space H2

w and expressed it in the form of a multiplication operator MzN .

Let w = {w0, w1, . . . } be a sequence of positive numbers. Then the space H2
w is the Hilbert

space of all analytic functions of the form

f(z) =

∞∑
k=0

akz
k

that are defined in the unit disk D. Also, the norm of these analytic functions are given by

‖f‖2 =

∞∑
k=0

wk|ak|2 <∞.

The weights w are taken in such a way that

sup{wn+1

wn
: n ≥ 0} <∞.

Hence, Mz, the operator of multiplication by z is bounded in H2
w. Let N > 1 be an integer.

Then MzN is the multiplication operator by zN . Stessin and Zhu considered the weighted unilateral
shift operator S on H2

w as

S = MN
z = MzN
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Let Xn = span{zn+kN : k = 0, 1, 2, . . . }. Clearly, Xn is a reducing subspace for S. The weights w
in this paper are classified into two types:
Type I: For each 0 < n,m < N − 1, and n 6= m, there exists a some integer k > 0 such that

wn+kN

wn
6= wm+kN

wm
.

Type II: If w is not of type I.

Base on these types, the important results of this paper are stated below:

Theorem 2.8. [SZ02] Every reducing subspace X of S in H2
w contains a minimal reducing subspace.

The reducing subspaces Xn, 0 ≤ n ≤ N − 1, are all minimal. And every minimal reducing subspace
of S in H2

w is singly generated by a polynomial of degree less than N .

Theorem 2.9. [SZ02] If w is of type I, then the only minimal reducing subspaces of S in H2
w are

Xn, 0 ≤ n ≤ N − 1. Moreover, S has exactly 2N distinct reducing subspaces in H2
w.

Theorem 2.10. [SZ02] If w is of type II, then S has infinitely many distinct minimal reducing
subspaces in H2

w.

Another significant work in this respect is by Hazarika and Arora in their paper [HA04]. They
extended the study of Stessin and Zhu and considered unilateral unweighted operator shifts on an
operator weighted sequence space `2A(K). Here, A is considered as a uniformly bounded sequence
of positive invertible self adjoint diagonal operators on a Hilbert space. In their paper, they gave
a detailed description of the minimal reducing subspaces of this operator. Below we give a brief
discussion of their work.

Let K be a separable Hilbert space with an orthonormal basis {en}∞n=0 . Let A = {An}∞n=0 be a
sequence of bounded linear operators on K. For each n = 0, 1, 2, . . . , An is considered as positive,
invertible and self adjoint. Also, the sequence of operators {A−1

n }∞n=0 is uniformly bounded. Then
the operator weighted sequence space is defined as

`2A(K) = {f = (f0, f1, f2, . . . ) : fi ∈ K and

∞∑
k=0

‖Akfk‖2 <∞},

and the inner product is given as

〈f, g〉A =

∞∑
k=0

〈Akfk, Akgk〉

Let S be the (unweighted) unilateral shift operator on `2A(K). Let xiyj be the sequence in K,
where ei is the (j + 1)th entry and all other entries are zero. A proper look into this sequence
shows that {xiyj}∞i,j=0 is an orthonormal basis for the Hilbert space `2A(K). The shift operator S
can then be written as

S(xiyj) = xiyj+1

for all i, j = 0, 1, 2, . . . . An important thing to be noted in this paper is that the weights A are
taken to be positive diagonal operators on the Hilbert space K. And, for each n = 0, 1, 2, . . . , the
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diagonal elements of the operator An are {α(n)
i }∞i=0. On the basis of these diagonal elements, which

are clearly positive, the weights A are divided into three types:

Type I: A is of type I if for each pair of distinct non negative integers n,m, there is an integer

k > 0 such that
β(k)
m

β
(0)
m

6= β(k)
n

β
(0)
n

.

Type II: A is of type II if it is not of type I, which means there exists distinct non negative

integers n,m, such that
β(k)
m

β
(0)
m

6= β(k)
n

β
(0)
n

for every positive integer k.

Let Xn be a subspace of `2A(K) given by Xn = Span{xnyk : k = 0, 1, 2, . . . }. The following
lemma shows that Xn is a reducing subspace of S.

Lemma 2.11. [HA04] For non negative integers i, k

S∗(xiyk) :=

 0, if k = 0;(
α

(k)
i

α
(k−1)
i

)2

xiyk−1, if k > 0.

The concluding results of this paper by Hazarika and Arora are stated below:

Theorem 2.12. [HA04] Xn’s are the only reducing subspaces of the shift S if we take the weight
sequence A to be of type I.

Theorem 2.13. [HA04] Xn’s are not the only reducing subspaces of the shift S when the weight
sequence A are of type II. In fact, in this case S may have infinite number of reducing subspaces.

From the above discussions on the unilateral operator weighted shift, we have seen that while
finding out reducing and minimal reducing subspaces of these shifts, various restrictions are im-
posed on the operator weights that are considered. One such set of conditions is to assume that the
weights are self adjoint and invertible. While in another situation, it is assumed that the operator
weights are simultaneously diagonalizable i.e, they are mutually commuting. The following work
done by Hazarika and Gogoi in their paper [HG17a] gave some significant results on the reducing
and minimal reducing subspaces of unilateral operator weighted shift, where the operator weights
are not necessarily simultaneously diagonalizable. Below we mention some important results in
[HG17a].

We begin with a brief introduction to the weights considered in [HG17a]:

Let B(K) denote the set of all bounded linear operators on the separable complex Hilbert space
K with orthonormal basis {en}∞n=0, and T be the subset of B(K) defined as follows:

T := {T ∈ B(K)
∣∣ T is invertible in B(K) and the matrix of T with respect to {en}∞0 has exactly

one non zero entry in each row and each column.}

We observe the following:
(i) If T1, T2 ∈ T , then T1T2 ∈ T . However, T1 and T2 need not commute and hence elements of T
are not simultaneously diagonalizable with respect to {en}∞0 .
(ii) If T ∈ T then its Hilbert adjoint T ∗ and inverse T−1 are also in T .
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(iii) Elements of T need not be self adjoint or normal.

The unilateral operator weighted shift W on `2+(K) is then considered with uniformly bounded
weights {An}n∈N0

in T .

Definition 2.14. [HG17a] Let S be the vector space of all finite linear combinations of finite
products of W and W ∗. For non-zero F ∈ `2+(K), let SF := {TF : T ∈ S}. Then the closure of
SF in `2+(K) is a reducing subspace of W , denoted by XF . Clearly XF is the smallest reducing
subspace of W in `2+(K) containing F .

One of the first results that is established in [HG17a] is the following:

Theorem 2.15. [HG17a] Let {An}∞n=0 be a sequence in T and supn ‖An‖ <∞. Then there exists
a sequence B = {Bn}∞n=0 of positive invertible diagonal bounded linear operators on K such that
the operator weighted shift W on `2+(K) with weight sequence {An}∞n=0 is unitarily equivalent to the
unilateral shift S on `2B(K).

We have already seen that in [HA04], the minimal reducing subspaces of S on `2B(K) is de-
termined when B represents a uniformly bounded sequence of invertible diagonal operators on K.
So in view of the work done in [HA04], we should also be able to determine the minimal reducing
subspaces of the operator weighted shift W on `2+(K) with weights {An} in T . However, this is
not an easy task because of the complex transformations involved in the process. It becomes quite
difficult to easily appreciate the end result. Hence, a different approach in adopted in this work.

Here, the unilateral operator weighted shift W with non diagonal operator weights is represented
as a direct sum of scalar weighted shift operators, as suggested in [Pil80]. In this respect, the
Theorem 3.9 [Lam71] is stated below for reference.

Theorem 2.16. [Lam71] The operator weighted shift W on `2(K) with operator weights {An}∞n=0

is a direct sum of scalar weighted shifts if and only if the weakly closed ∗ algebra generated by
{I, A0, A1, . . . } is diagonalizable.

In view of the above theorem, the operator weighted shift W on `2+(K) with weights An in T
can be expressed as a direct sum of scalar weighted shift operators.

Theorem 2.17. [HG17a] Let W be an operator weighted shift on `2+(K) with uniformly bounded
operator weights {An}n∈N0

where each An ∈ T . Then there exists scalar weighted shift operators
S0, S1,. . . on `2 such that W on `2+(K) is unitarily equivalent to S0 ⊕ S1 ⊕ . . . on `2 ⊕ `2 ⊕ . . . .

Based on these scalar weighted shifts, the unilateral operator weighted shift is classified into
three types:

Type I: If no two scalar shifts Sn’s are identical.

Type II: At least two distinct scalar shifts Sn and Sm are identical.

Type III: For n,m = 0, 1, 2, . . . , n is said to be related to m with respect to W , denoted by
n ∼W m if Sn and Sm are identical. Clearly ∼W is an equivalence relation on N0. W is said to be
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of Type III if ∼W partitions N0 into a finite number of equivalence classes.

Some of the significant results on reducing and minimal reducing subspaces of the unilateral
operator weighted shift W are mentioned below:

Theorem 2.18. [HG17a] If W is of Type I, then Xgn,0 for n ∈ N0 are the only minimal reducing
subspaces of W in `2+(K).

Theorem 2.19. [HG17a] If W is of Type II, then W has minimal reducing subspaces other than
Xgn,0 (n ∈ N0). In fact, for every W -transparent F , XF is a minimal reducing subspace and
hence W will have infinitely many minimal reducing subspaces in `2+(K). (A linear expression
F =

∑
i∈N0

αigi,0 in `2+(K) is said to be W -transparent if for every pair of non-zero scalars αi and

αj, we have i ∼W j.)

Theorem 2.20. [HG17a] If W is of Type III, then every reducing subspace of W must contain a
minimal reducing subspace.

Finally, we discuss the paper [HG17b] by Hazarika and Gogoi, where the unilateral (unweighted)
shift S is considered on the operator weighted sequence space `2B(K). Here, the set of operator
weights B = {Bn}n∈N0

are in T (as given in [HG17a]).

Let B = {Bn}n∈N0 be a uniformly bounded sequence of operators in the class T . For each

n ∈ N0 let γ
(n)
j denote the unique non zero entry occurring in the jth column of the matrix of Bn.

The weights {Bn} are then divided into three types:

Type I: If for each pair of distinct non negative integers m and n there exist some positive

integer k such that
γ(k)
m

γ
(0)
m

6= γ(k)
n

γ
(0)
n

.

Type II: If there exist distinct non negative integers m and n such that
γ(k)
m

γ
(0)
m

=
γ(k)
n

γ
(0)
n

for every

positive integer k.

For i, j ∈ N0, let fi,j in `2B(K) be the sequence that has ei as the jth entry and zero as all
other entries. It is proved in [HG17b] that {fi,j}i,j∈N0

is an orthonormal basis for the Hilbert space
`2B(K). Hence the unilateral shift S can be written as Sfi,j = fi,j+1.

Let S be the collection of all finite linear combinations of finite products of the operators S and
its adjoint. Define SF = {TF : T ∈ S}, where F is a non zero function in `2B(K). The closure of
the space SF in `2B(K), denoted by XF is a reducing subspace of S. It can be clearly seen that XF

is the smallest reducing subspace of `2B(K) that contains F .
Based on this classification, the main results in this paper are the following:

Theorem 2.21. [HG17b] Let B = {Bn}n∈N0
be a uniformly bounded sequence of operators in T ,

and S be the unilateral shift on `2B(K). If the weight sequence {Bn}n∈N0
is of type I, then Xfn,0 for

n ∈ N0 are the only minimal reducing subspaces of S in l2B(K).

Theorem 2.22. [HG17b] Let B = {Bn}n∈N0
be a uniformly bounded sequence of operators in T ,

and S be the unilateral shift on l2B(K). If {Bn}n∈N0 is of type II, then S has minimal reducing
subspaces other than Xfn,0 , n ∈ N0.
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3 Conclusion

From the above discussion, we have seen that operator weighted shifts have been very widely
studied and most of these work vary on the basis of the different types of operator weights that
have been considered. So, keeping in view the fact that we still have quite a number of restrictions
being imposed on these operator weights, there is a lot of scope for research in this area. As for
example, the operator weights taken in [HG17a] and [HG17b] are neither normal nor simultaneously
diagonalizable, but still there is a certain specific structure to its matrix representation. We cannot
say anything if such a structure is not maintained. Also, in recent times we have seen that certain
graph theoretical concepts are introduced and weighted shifts are defined on directed trees. In this
context, we can refer the following papers: [JS12], [MS16], [SW89]. Although many important
properties such as subnormality and hyponormality have already been discussed in this regard, but
still very less can be seen about reducing subspaces of such shifts defined in directed trees.
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Abstract. In financial market, a risk measure is used to determine the amount of capital to be
kept in reserve. The purpose of this reserve is to make the risks taken by financial institutions,
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1 Introduction

A major concern for the regulators and owners of financial institutions is the market risk of a
portfolio consisting of risky assets, e.g. a stock market index or a mutual fund, and the adequacy
of capital to meet such risk (see [DDV00]). Market risk is the risk of losses in positions arising from
the movements in market prices of assets in a portfolio. “The financial disasters of the early 1990s
incurred by several institutions such as Orange County, Procter and Gamble and NatWest, through
inappropriate derivatives pricing and management, as well as fraudulent cases such as Barings
Bank and Sumitomo, have brought risk management and regulation of financial institutions to
the forefront of policy making and public discussions” (see [DDV00]). These disasters proved that
billions of dollars can be lost because of poor supervision and management of financial risks. “The
notion of risk measure arose from the method of quantifying risk” (see [Tsu09]). In financial market,
a risk measure is used to determine the amount of capital to be kept in reserve.

There are several ways of measuring the potential loss amount due to market risk. Value at risk
(VaR), was developed to measure financial market risk in response to the financial disasters of the
early 1990s (see [Jor00]). Since then VaR has spread well beyond derivatives and is changing the way
institutions approach their financial risk (see [Jor00]). VaR is an extreme quantile of the marginal
loss distribution. Its use was recommended by the Basel Committee on Banking Supervision in
1996. But VaR is not a coherent risk measure. In recent years attention has turned towards
convex and coherent risk measures. Artzner et al. ([Art97, ADEH99]) introduced the concept of
coherent risk measure which is a function that satisfies monotonicity, subadditivity, homogeinity
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and translational invariance. VaR does not satisfy the subadditivity property. More importantly,
VaR is not able to distinguish portfolios which bear different levels of risk (see [ANS01]). To address
these issues, expected shortfall was introduced by Artzner et al., which is a coherent risk measure
(see [ADEH99]). ES is defined as the mean of the conditional log return distribution, given the
event that the log return is less than the VaR. It is closely linked to VaR, and is regarded as a good
supplement to the VaR (See [ANS01]). Another coherent risk measure called Median Shortfall(MS)
was introduced by So and Wong(see [SW12]). MS is the median loss when the loss in the investment
exceeds the VaR level. There are several other risk measures to estimate market risk which we shall
discuss in the next sections.

In section 2 we give the definition of risk measure along with its properties. In section 3 we
discuss about the various types of risk measures which are used to estimate market risk. And in
section 4 we give the summary.

2 Risk measure

A risk measure is a function that assigns real numbers to the possible outcomes of a random
financial quantity, such as an insurance claim or loss of a portfolio (see [BJPZ08]). Loss due to
price fluctuations or insurance claim size are usually represented by random variables. Let ψ denote
the set of real valued random variables on a probability space (Ω, F , P).

Definition 2.1. (Delbaen [Del02]) A risk measure ρ is a mapping from ψ to R satisfying certain
properties, viz.

1. X ≥ 0⇒ ρ(X) ≤ 0.

2. X ≥ Y ⇒ ρ(X) ≤ ρ(Y ), X, Y ∈ ψ.

3. ρ(λX) = λρ(X), ∀λ ≥ 0, X ∈ ψ.

4. ρ(X + k) = ρ(X)− k, ∀k ∈ R, X ∈ ψ.

The term “coherent” risk measure is reserved for risk measures that satisfies one more additional
property, viz. subadditivity. Artzner et al. introduced the concept of coherent risk measure (see
[Art97, ADEH99]).

Definition 2.2. (Delbaen [Del02]) A risk measure ρ on ψ is said to be coherent if in addition to
the properties 1− 4, ρ also satisfies the following “subadditivity” property, viz.

ρ(X + Y ) ≤ ρ(X) + ρ(Y ),∀X, Y ∈ ψ.

For a nice representation theorem, the following continuity property is needed:

• Fatou property: If the Xn is uniformly bounded in absolute value by 1 and Xn
P−→ X, then

ρ(X) ≤ lim inf ρ(Xn).

Delbaen [Del02] proved that any coherent risk measure with Fatou property can be represented as

ρ(X) = sup{EQ(X) : Q ∈ L},
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where L is a set of probability measures and each member of L is absolutely continuous with respect
to P .

Jouini, Schachermayer, and Touzi [JST06] proved that for coherent risk measures, the Fatou
property automatically follows from the law invariance under the assumption that (Ω, F , P) is
atomless. Kusuoka [Kus01] showed that every law invariant, comonotonically additive coherent
risk measure can be represented as the expectation of the risk under a convexly distorted distribu-
tion. Föllmer and Schied [FS02] and Fritelli and Rosazza Gianin [FG02] generalized coherent risk
measures to the convex case by replacing the two properties of subadditivity and positive homo-
geneity with the property of convexity. They showed that, as with coherent risk measures, each
convex lower semi-continuous risk measure admits a dual representation. In the next section we
shall discuss several coherent and convex risk measures.

3 Well known risk measures

• Value-at-risk (VaR): VaR is a popular measure of market risk associated with an asset
or portfolio of assets (see [Hul12]). It is defined as an extreme quantile of the marginal loss
distribution. It is a cut-off value that separates future loss events into risky and non-risky
scenarios (see [SW12]). VaR’s use was recommended by the Basel Committee on Banking
Supervision in 1996 as a benchmark risk measure and has been widely used by financial
institutions for asset management and minimization of risk. Comprehensive discussions on
VaR are available in Duffie and Pan [DP97], Danielsson and De Vries [DDV00] and Jorion
[Jor00].

Let, X be a random variable representing a loss of some financial position. For 0 < p < 1,
the (1− p)th quantile of the distribution with distribution function F is defined as

Qp = inf{x : F (x) ≥ (1− p)},

the 100(1−p) percent VaR, denoted by V aRp, is the negative (1−p)th quantile of the marginal
distribution of X, i.e.

V aRp = −Qp. (38)

Hence estimation of V aRp essentially reduce to the problem of estimation of the quantile Qp.

V aRp satisfies the properties 1− 4 in Definition (2.1) (see [ADEH99]). But it fails to satisfy
the “subadditivity” property. Hence, VaR is not a coherent risk measure. This implies that
the risk of a portfolio, when measured by VaR, can be larger than the sum of the standalone
risks of its components.

• Expected shortfall (ES): Artzner et al. ([Art97, ADEH99]) have shown that VaR does not
provide any information about the size of the potential loss when it exceeds the VaR level. ES
is defined as the mean of the conditional return distribution, given the event that the return
is less than the VaR. For a given level p, the shortfall distribution is given by the cumulative
distribution function Θp defined by:

Θp(x) = P{X ≤ x|X > Qp}.
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The mean of this distribution is called the expected shortfall, and is denoted by ESp. Math-
ematically, the 100(1− p) ES can be written as

ESp = −1

p

∫ 1

1−p
Qp(u)du.

It is closely linked to VaR, and is regarded as a good supplement to the VaR (See [Ace02,
Ace03]). ES is a coherent risk measure (see [ADEH99]). Yamai and Yoshiba showed that ES
is easily decomposed and optimized, while VaR is not (see [YY02]). The decomposition of
risk is a useful tool for managing portfolio risk (see [YY02]). For example, risk decomposition
enables risk managers to select assets that provide the best risk-return trade-off, or to allocate
Ã¯Â¿Â½economic capitalÃ¯Â¿Â½ to individual risk factors (see [YY02]). The concept of VaR
decomposition was proposed by Garman in 1997 (see [Gar97]). Yamai and Yoshiba described
the method of decomposing VaR and ES which was developed by Hallerbach in 1999 and
Tasche in 2000 (see [Hal99, Tas99]). One disadvantage of ES is that it is not elicitable
whereas VaR is elicitable [Gne11].

• Median shortfall (MS): So and Wong introduced this risk measure and named it Median
Shortfall(MS) (see [SW12]). By definition, MS is the median of the conditional return dis-
tribution, given that the return is less than the VaR level (see [SW12]). Let Θp denote the
distribution function of this conditional return distribution. It is defined as follows

Θp(x) = P{X ≤ x|X > Qp}.

The median of this distribution is called the Median Shortfall, denoted by MSp (see [SW12]).
The MS can be written as

MSp = − inf{x : Θp(x) ≥ 0.5} = −Q0.5p. (39)

The marginal loss distribution F and the quantile function Q are unknown. Therefore
V aRp, ESp and MSp are unknown in practice. From (38) and (39), we see that estima-
tion of V aRp and MSp essentially reduce to the problem of estimation of the quantiles of the
marginal loss distribution.

• Entropic risk measure: The entropic risk measure [FK11] is defined as

eγ :=
1

γ
logEP[e−γX ]

= sup
Q
EQ[−X]− 1

γ
H(Q|P).

for parameters γ ∈ [0,∞), where e0 := EP[−X] and H(Q|P) denotes the relative entropy of Q
with respect to P . “VaR is the one which is used most widely, but it has various deficiencies;
in particular it is not convex and may thus penalize a desirable diversification” [FK11]. ES
is a coherent risk measure, i. e., convex and also positively homogeneous. As shown by
Kusuoka [Kus01] in the coherent and by Frittelli and Rosazza Gianin [FG02] in the general
convex case, ES is a basic building block for any law-invariant convex risk measure. The
entropic risk measures eγ are convex, and they are additive for independent positions. The
coherent version of the entropic risk measure was discussed by Föllmer and Knispel in 2011
(see [FK11]).
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Definition 3.1. For each c > 0, the risk measure ρc defined by

ρc = sup
Q∈M1:H(Q|P )≤c

EQ(−X), X ∈ L∞

is called the coherent entropic risk measure.

Föllmer and Knispel [FK11] also showed that ρc is law-invariant. They have also showed the
relation between coherent entropic risk measure and convex entropic risk measure.

• Entropic Value-at-Risk (EVaR): Ahmadi-Javid in 2012 proposed a new coherent risk
measure which is the possible upper bound obtained from the Chernoff inequality for the
VaR (see [AJ12b]). Let, LM be the set of all Borel Measurable functions whose moment
generating function is MX(z) = E(ezX), for all z ∈ R and LM+ be the set of all Borel
Measurable functions whose moment generating function MX(z) exists for all z ≥ 0. The
Chernoff inequality [C52] for any constant a and X ∈ LM+ is as follows:

P (X ≥ a) ≤ e−zaMX(z), ∀z > 0.

By solving the equation e−zaMX(z) = p with respect a for p ∈]0, 1], we obtain

aX(p, z) := z−1ln(MX(z)/p),

for which we have P (X ≥ aX(p, z)) ≤ p. In fact, for each z > 0, aX(p, z) is an upper bound
for V aRp. The author considered the best upper bound of this type as a new risk measure
that bounds V aRp by using exponential moments. The special case aX(1, z) is known as the
exponential premium in the actuarial literature (see [GDVH84, Ger74]). In finance literature
[FS02], it is considered as a convex risk measure, which is called the entropic risk measure.

Definition 3.2. (Ahmadi-Javid [AJ12b]) The entropic value-at-risk (EVaR) of X ∈ LM+

with confidence level 1− p is defined as:

EV aRp := inf
z>0
{aX(p, z)} = inf

z>0
{z−1ln(MX(z)/p)}. (40)

Ahmadi-Javid [AJ12b] proved that the EVaR is a coherent risk measure. Ahmadi-Javid
[AJ12b] also showed that EVaR is more risk-averse as compared to the ES at the same
confidence level. Hence, the EVaR proposes a financial and insurance agency distributing
more assets to avoid risk. Inspired by the dual representation of the EVaR, which is closely
related to the Kullback-Leibler [KL51] divergence, also known as the relative entropy, Ahmadi-
Javid [AJ12b] defined a large class of coherent risk measures, called g-entropic risk measures.

The generalized relative entropy ofQ with respect to P, denoted byHg(P, Q), is an information-
type pseudo-distance or divergence measure from Q to P:

Hg(P, Q) :=

∫
g

(
dQ

dP

)
dP,

where g is a convex function with g(1) = 0 (see [AJ12b]). This quantity is an important
non-symmetric divergence measure discussed in (see [AS66]). Note that Hg(P, Q) ≥ 0, and
Hg(P, Q) = 0 if Q = P.
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Definition 3.3. (Ahmadi-Javid [AJ12b]) Let g be a convex function with g(1) = 0, and β be
a nonnegative number. The g-entropic risk measure with divergence level β is defined as

ERg,β(X) := sup
Q∈=

EQ(X),

where = = {Q << P : Hg(P, Q) ≤ β}.

Ahmadi-Javid [AJ12a] shows how this risk measure can be used in machine learning when un-
certainty affects the input data. Ahmadi-Javid and Fallah-Tafti [AJFT19] has done portfolio
optimization with EVaR.

• Spectral risk measures (SRMs): Spectral risk measures proposed by Acerbi ([Ace02,
Ace03]) belong to the family of coherent risk measures and hence inherit the properties of
such measures. One of the nice features of SRMs is that they relate the risk measure to the
user’s risk aversion in effect, the spectral risk measure is a weighted average of the quantiles
of a loss distribution, the weights of which depend on the user’s risk aversion (see [DCS08]).
SRMs therefore enable us to link the risk measure to the userâ€™s attitude towards risk,
and we might expect that if a user is more risk-averse, other things being equal, then that
user should face a higher risk, as given by the value of the SRM (see [DCS08]). “A user
who is risk-averse might prefer to work with a risk measure that takes account of his/her risk
aversion, and this takes us to the class of spectral risk measures (SRMs)” (see [DCS08]). The
SRMs are defined by a general convex combination of ES.

Definition 3.4. (Gzyl and Mayoral [HS08]) An element φ ∈ L1([0, 1]) is called an admissible
risk spectrum if

1. φ ≥ 0

2.
∫ 1

0
|φ(t)|dt = 1

3. φ is non-increasing.

Definition 3.5. (Gzyl and Mayoral [HS08]) Let, an admissible risk measure φ ∈ L1([0, 1]),
then the spectral risk measure is defined by

Mφ = −
∫ 1

0

φ(u)Qudu. (41)

φ is called the Risk Aversion Function. The Risk Aversion Function is defined by Cotter and
Dowd [CD06]

φ(u) =
ke−k(1−u)

1− e−k
(42)

where k ∈ (0,∞) is the user’s coefficient of absolute risk aversion. Dowd et al. [DCS08]
proposed two more Risk Aversion Functions. The authors showed that SRMs can also be ob-
tained based on other Risk Aversion Functions. These are called power spectral risk measures
(PSRMs). These are

φ(u) =

{
γ(1− u)γ−1 for γ < 1
γuγ−1 for γ > 1.
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From equation (42) we see that if φ(u) = 1
p10≥u≥p then Mφ is defined as the ES which is

a spectral risk measure (see [HS08]). But VaR is not a spectral risk measure as it is not a
coherent risk measure. Gzyl and Mayoral [HS08] studied the relationship between SRMs and
distortion risk measures. The authors also proved that SRMs are equivalent to distorted risk
pricing measures, or equivalently, spectral risk functions are related to distorted functions. It
is observed that SRMs are not elicitable but Ziegel has proved that under one condition SRM
is elicitable [Zie16].

• Distortion risk measure: Using Kusuoka [Tsu09] representation the class of distortion risk
measure can be written in the following form

ρD =

∫
[0,1]

QudD(u) =

∫
R
xdD ◦ F (x), (43)

where D is a convex distortion function and Qu is the quantile function. The SRMs and
weighted VaR [Che06] are same class of risk measures.

Definition 3.6. [Tsu13] A distortion function D is a right-continuous increasing function
on [0, 1] with values in [0, 1] such that D(0) = 0 and D(1) = 1.

If F is a distribution function and D a distortion then R = D ◦ F is again a distribution
function, and it is called the distorted distribution under D. A distortion can be viewed
as a transformation on the space of distribution function’s. And the expectation under the
distorted distribution function R, that is,

∫
xdR(x), will be called the distorted expectation

under D. A distorted expectation is also called the Choquet integral [Cho54], the nonaddi-
tive integral [Den13], or the fuzzy integral [GSM10]. Tsukahara [Tsu09] did not use these
terms because the distorted expectation is a proper integral and distribution function is being
distorted, not a probability measure.

Tsukahara [Tsu13] suggested a one-parameter family of distortion that yields several classes
of coherent risk measures

– Proportional hazards (PH) distortion (Wang, [Wan96]):DPH
θ (u) = 1− (1− u)θ,

– Proportional odds (PO) distortion: DPO
θ (u) = θu/[1− (1− θ)u],

– Gaussian distortion (Wang, [Wan00]): DGA
θ (u) = Φ(Φ−1(u) + logθ)

4 Summary

The above mentioned risk measures are the well known risk measures to estimate the market risk.
There are a lot of literature available to estimate these risk measures. Especially the VaR, ES and
MS. Various authors have studied the estimation procedures of these risk measures. But we find
a very few literature on the estimation methods of spectral risk measure, distortion risk measure
and convex risk measures. Other than empirical distribution function we do not find any other
distribution function estimator considered in the estimation of SRMs and distortion risk measures.
As these risk measures are an important tool to estimate the market risk we should concentrate
more on the estimation methods of these risk measures. As there are already a lot of literature
regarding the properties of these risk measures. So further studies should be concentrated more on
estimation methods of these risk measures.
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