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Preface

The present book is a collection of several survey articles written by young Mathe-

matics researchers from Assam, describing mainly their work. The topics selected are

from various areas of Mathematics. The book begins with an article in Number The-

ory enunciating the recent developments in the area. Then we have several articles in

Differential Equations, Computational Fluid Dynamics, Algebra and Topology.

It is hoped that this book would serve as a ready reference for someone who is inter-

ested in the topics presented here. A generous sprinkling of open problems in almost

all the articles makes it easy to look for research problems in these areas and the editor

hopes that it will serve the mathematical community well.

Lakhimpur Dr. Parama Dutta

October 2020 Assistant Professor

Lakhimpur Girls’ College
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Relations between the number of

representation of n in two certain

quadratic forms

Hirakjyoti Das

Department of Mathematical Sciences, Tezpur University, Sonitpur, Assam, India

email: hirakjyoti@live.in

Abstract. In this review article, we provide the compendium of results on the rela-

tions between the number of representation of a positive integer in the quadratic forms

c1x2
1 + c2x2

2 +·· ·+ck x2
k and c1x1(x1 +1)/2+ c2x2(x2 +1)/2+·· ·+ck xk (xk +1)/2.

2020 Mathematical Sciences Classification. Primary 11E25; Secondary 11E20.

Keywords. Representations in quadratic forms, Triangular numbers.

1 Introduction

For positive integers c1,c2,c3,c4, and n, let

r (c1,c2,c3,c4;n) := card{(x1, x2, x3, x4) ∈Z4 | c1x2
1 + c2x2

2 + c3x2
3 + c4x2

4 = n},

t (c1,c2,c3,c4;n) := card
{

(x1, x2, x3, x4) ∈Z4 | c1
x1(x1 +1)

2
+ c2

x2(x2 +1)

2

+ c3
x3(x3 +1)

2
+ c4

x4(x4 +1)

2
= n

}
.
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The generating functions of r (c1,c2,c3,c4;n) and t (c1,c2,c3,c4;n) are given by

∞∑
n=0

r (c1,c2,c3,c4;n)qn =ϕ
(
qc1

)
ϕ

(
qc2

)
ϕ

(
qc3

)
ϕ

(
qc4

)
,

∞∑
n=0

t (c1,c2,c3,c4;n)qn =ψ
(
qc1

)
ψ

(
qc2

)
ψ

(
qc3

)
ψ

(
qc4

)
,

where ϕ(q) and ψ(q) are Ramanujan’s theta functions. Jacobi, in 1828 proved that

r (1,1,1,1;n) = ∑
d |n,4-d

d .

There have been extensive work the exact formulas for r (c1,c2,c3,c4;n) and t (c1,c2,c3,c4;n)

which involve the divisor function σ(n) which is defined as the sum of the positive divi-

sors of n. In recent years, many researchers have found relations between r (c1,c2,c3,c4;n)

and t (c1,c2,c3,c4;n). In this review article, we collect and state all such relations avail-

able in the literature.

2 Relations between r (c1,c2,c3,c4;n) and t (c1,c2,c3,c4;n)

In 2016, Sun [2] found the following results.

Theorem 2.1. (Z. -H. Sun, [2]) Let a ∈ {1,3,5, . . .} and m ∈ {0,1,2, . . .}. For n ∈N, we have

t (a, a,2a,8m +4;n)

= 2

3
(r (a, a, a,4m +2;4n +4m +2a +2)− r (a, a, a,4m +2;n +m + (a +1)/2))

= 2

3
(r (a, a,2a,8m +4;8n +8m +4a +4)− r (a, a,2a,8m +4;2n +2m +a +1)) .

Theorem 2.2. (Z. -H. Sun, [2]) Let a ∈ {1,3,5, . . .} and k,m ∈ {0,1,2, . . .} and k ≡ m (mod 2).

For n ∈N, we have

t (a,3a,4k +2,4m +2;n)

= 2

3
(r (a,3a,4k +2,4m +2;8n +4m +4k +4a +4)

− r (a,3a,4k +2,4m +2;2n +m +k +a +1)).
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Theorem 2.3. (Z. -H. Sun, [2]) Let a,k ∈N with 2 - ak. For n ∈N, we have

t (a,3a,k,k;m) = 2

3
r (a,3a,2k,2k;8m +4a +2k).

Theorem 2.4. (Z. -H. Sun, [2]) Let a ∈ {1,3,5, . . .}, k,m ∈ {0,1,2, . . .} and n ∈ N. If n ≡
k + a−1

2 (mod 2), then

t (a,3a,8k +4,4m +2;n) = 2

3
r (a,3a,8k +4,4m +2;8n +4m +8k +4a +6).

Theorem 2.5. (Z. -H. Sun, [2]) If n ∈N and 8n +13 = 3βn1 with n1 ∈N and 3 - n1, then

t (1,3,3,6;n) = 2

5
r (1,3,3,6;8n +13).

Theorem 2.6. (Z. -H. Sun, [2]) If n ∈N and n ≡ 1,2 (mod 4), then

t (1,1,4,6;n) = 2r (1,1,4,6;2n +3).

Theorem 2.7. (Z. -H. Sun, [2]) If n ∈N and n ≡ 1 (mod 4), then

t (2,2,3,9;n) = 4

3
r (2,2,3,9;2n +4).

Theorem 2.8. (Z. -H. Sun, [2]) For n ∈N, we have

t (1,2,2,6;n) = 1

2
r (1,1,4,6;8n +11)

t (1,1,8,12;2n) = 1

2
r (1,1,8,12;16n +22).

Besides these above results, Sun conjectured several relations between r (c1,c2,c3,c4;n)

and t (c1,c2,c3,c4;n). The conjectures are as follows.

Conjecture 2.9. Let n ∈N with n ≡ 0,3 (mod 4). Then

t (1,1,4,6;n) = 2

3
r (1,1,4,6;8n +12)− r (1,1,4,6;2n +3).
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Conjecture 2.10. Let n ∈N. If 3 | n, then

t (1,1,8,12;n) = 1

2
r (1,1,8,12;8n +22).

Conjecture 2.11. Let m ∈N. Then

t (1,3,8,8;3m) = 1

3
r (1,3,8,8;24m +20)−2r (1,3,8,8;6m +5).

Conjecture 2.12. Let n ∈N with n ≡ 0 (mod 6). Then

t (1,2,3,8;n) = 2

3
r (1,2,3,8;8n +14)−2r (1,2,3,8;4n +7).

Conjecture 2.13. Let n ∈N with n ≡ 0,2 (mod 8). Then

t (1,2,4,17;n) = 4r (1,2,4,17;n +3).

Conjecture 2.14. Let n ∈N. If n ≡ 2,3 (mod 5), then

t (1,1,5,8;n) = 1

2
r (1,1,5,8;8n +15).

Conjecture 2.15. Let n ∈N. If n ≡ 0,3,4,6,7 (mod 9), then

t (1,1,8,9;n) = 1

2
r (1,1,8,9;8n +19).

Conjecture 2.16. Let n ∈N. If n ≡ 0,4,7,8,9,10 (mod 13), then

t (1,1,8,13;n) = 1

2
r (1,1,8,13;8n +23).

Conjecture 2.17. Let n ∈N. If n ≡ 0,3,5,6,7 (mod 11), then

t (1,1,4,11;n) = 1

3
r (1,1,4,11;8n +17).

Conjecture 2.18. Let n ∈N. If n ≡ 0,1,2,4,7 (mod 11), then

t (1,1,2,22;n) = 1

3
r (1,1,2,22;8n +26).

9
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Conjecture 2.19. Let n ∈N with n ≡ 1 (mod 3). Then

t (1,3,12,36;n) = 1

2
r (1,3,12,36;8n +52)−2r (1,3,12,36;2n +13).

Conjecture 2.20. Let n ∈N with n ≡ 1 (mod 4). Then

t (3,5,20,32;n) = 1

2
r (3,5,20,32;8n +60)−2r (3,5,20,32;2n +15).

Conjecture 2.21. Let n ∈N with n ≡ 1 (mod 4). Then

t (1,6,15,18;n) = 2

3
r (1,6,15,18;8n +40)−2r (1,6,15,18;2n +10).

Conjecture 2.22. Let n ∈N with n ≡ 1 (mod 3). Then

t (1,6,18,27;n) = 2

3
r (1,6,18,27;8n +52)−2r (1,6,18,27;2n +13).

Conjecture 2.23. Let n ∈N with n ≡ 1 (mod 3). Then

t (1,8,9,18;n) = 2

3
r (1,8,9,18;8n +36)−2r (1,8,9,18;2n +9).

Conjecture 2.24. Let n ∈N with 4 | n. Then

t (1,7,10,30;n) = 2

3
r (1,7,10,30;8n +48)−2r (1,7,10,30;2n +12).

Conjecture 2.25. Let n ∈N with n ≡ 3 (mod 4). Then

t (1,10,15,30;n) = 2

3
r (1,10,15,30;8n +56)−2r (1,10,15,30;2n +14).

Conjecture 2.26. Let n ∈N with n ≡ 2 (mod 8). Then

t (1,7,28,28;n) = 2

3
r (1,7,28,28;8n +64)−2r (1,7,28,28;2n +16).

Conjecture 2.27. Let n ∈N with n ≡ 8 (mod 9). Then

t (1,9,16,18;n) = 2

3
r (1,9,16,18;8n +44)−2r (1,9,16,18;2n +11).
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Conjecture 2.28. Let n ∈N with n ≡ 1,7 (mod 9). Then

t (1,9,18,24;n) = 2

3
r (1,9,18,24;8n +52)−2r (1,9,18,24;2n +13).

Conjecture 2.29. Let n ∈N with n ≡ 1,4 (mod 9). Then

t (1,9,18,32;n) = 2

3
r (1,9,18,32;8n +60)−2r (1,9,18,32;2n +15).

Conjecture 2.30. Let n ∈N with n ≡ 5 (mod 9). Then

t (1,9,18,40;n) = 2

3
r (1,9,18,40;8n +68)−2r (1,9,18,40;2n +17).

Conjecture 2.31. Let n ∈N with n ≡ 2,5 (mod 9). Then

t (1,10,27,30;n) = 2

3
r (1,10,27,30;8n +68)−2r (1,10,27,30;2n +17).

Some of the conjectures have been confirmed by the authors in [1, 6, 7, 8].

In 2017, Wang and Sun [5] found the following theorems.

Theorem 2.32. (Wang-Sun, [5]) Let m,n ∈N and a ∈ {1,3,5, . . .}, then

t (a, a,2a,8m;n) = 2

3
r (a, a,2a,8m;8n +8m +4a)−2r (a, a,2a,8m;2n +2m +a).

Theorem 2.33. (Wang-Sun, [5]) Let a ∈ {1,3,5, . . .} and k,m ∈ {0,1,2, . . .}. For n ∈N, we

have

t (a,3a,8k +2,8m +6;n) = 2

3
r (a,3a,8k +2,8m +6;8n +8k +8m +4a +8)

−2r (a,3a,8k +2,8m +6;2n +2k +2m +a +2).

Theorem 2.34. (Wang-Sun, [5]) Let a ∈ {1,3,5, . . .}, m ∈ {0,1,2, . . .} and n ∈ N. If n ≡
m + a−1

2 (mod 2), then

t (a,3a,8m +4,8m +4;n) =2

3
r (a,3a,8m +4,8m +4;8n +16m +4a +8)

−2r (a,3a,8m +4,8m +4;2n +4m +a +2).
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Theorem 2.35. (Wang-Sun, [5]) Let a ∈ {1,3,5, . . .}, k,m ∈ {0,1,2, . . .} and n ∈ N. If n ≡
a−1

2 (mod 2), then

t (a,3a,16k +4,16m +4;n) =2

3
r (a,3a,16k +4,16m +4;8n +16k +16m +4a +8)

−2r (a,3a,16k +4,16m +4;2n +4k +4m +a +2).

Recently, in 2019, Sun [3] again found many relations which are stated below.

Theorem 2.36. (Sun, [3]) Suppose a,b,c,d ,n ∈N,2 - abc and a ≡ b ≡ c (mod 4). Then

t (a,b,c,d ;n)

= r (a,b,c,d ;8n +a +b + c +d)− r (a,b,c,4d ;8n +a +b + c +d).

Corollary 2.37. (Sun, [3]) Let a,b,c,d ,n ∈ N with a ≡ b ≡ c ≡ ±1 (mod 4) and d ≡ 4

(mod 8). Then

t (a,b,c,d ;n) = r (a,b,c,d ;8n +a +b + c +d).

Theorem 2.38. (Sun, [3]) Suppose a,b,c,d ,n ∈N, 2 - abcd and a ≡ b ≡ c ≡ d (mod 4).

Then

t (a,b,c,d ;n) = r
(
a,b,c,d ;8n +a +b + c +d

)− r
(
a,b,c,d ;2n + a +b + c +d

2

)
.

Theorem 2.39. (Sun, [3]) Suppose a,b,c,d ,n ∈N,2 - a,2 | b,2 | c,8 - b,8 - c and 8 - b + c.

Then

t (a,b,c,d ;n)

= r (a,b,c,d ;8n +a +b + c +d)− r (a,b,c,4d ;8n +a +b + c +d).

Theorem 2.40. (Sun, [3]) Suppose a,c,d ,n ∈N, 2 - a and 4 - c. Then

t (a,3a,c,d ;n) = 2r (4a,12a,c,d ;8n +4a + c +d)−2r (4a,12a,c,4d ;8n +4a + c +d).

Corollary 2.41. (Sun, [3]) Suppose a,c,d ,n ∈N, 2 - ac and d ≡ 2,c (mod 4). Then

t (a,3a,c,d ;n) = 2r (4a,12a,c,d ;8n +4a + c +d).

12



Theorem 2.42. (Sun, [3]) Let a,b,d ,n ∈N with 2 - ab. Then

t (a,3a,2b,d ;n) = 2

3

(
r (a,3a,2b,d ;8n +4a +2b +d)− r (a,3a,2b,4d ;8n +4a +2b +d)

)
.

Theorem 2.43. (Sun, [3]) Let a,d ,n ∈N. Then

t (a,3a,9a,d ;n) = 1

2

(
r (a,3a,9a,d ;8n +13a +d)− r (a,3a,9a,4d ;8n +13a +d)

)
.

Theorem 2.44. (Sun, [3]) Let a,b,c,n ∈N with 2 - ab and n 6≡ a+b
2 (mod 2). Then

t (a,3a,4b,2c;n)

= 2

3

(
r (a,3a,4b,2c;8n +4a +4b +2c)− r (a,3a,4b,8c;8n +4a +4b +2c)

)
.

Theorem 2.45. (Sun, [3]) Let m,n ∈N.

(i) If there is a prime divisor p of 2m +1 such that ( 8n+5
p ) =−1, then

t (1,2,2,4m +2;n) = 1

2
r (1,1,4,4m +2;8n +4m +7).

(ii) If there is a prime divisor p of 2m +1 such that ( 8n+9
p ) =−1, then

t (1,4,4,4m +2;n) = 1

4
r (1,1,4,4m +2;8n +4m +11).

Theorem 2.46. (Sun, [3]) Let a,b ∈ {1,3,5, . . .}. Then for n ∈N,

t (a, a,2b,4b;n) = r (a, a,b,2b;4n +a +3b)− r (a, a,b,2b;2n + (a +3b)/2).

Theorem 2.47. (Sun, [3]) Let a,b ∈ {1,3,5, . . .} and n ∈N. Then

t (a,2a,4a,b;n) = 1

4

(
r (a, a, a,2b;16n +14a +2b)− r (a, a,2a,b;8n +7a +b)

)
.

Theorem 2.48. (Sun, [3]) Let a,b ∈ {1,3,5, . . .} and n ∈N. Then

r (a, a,2a,b;2n +a +b) = 1

3

(
r (a, a, a,2b;4n +2a +2b)+2r

(
a, a, a,2b;n + a +b

2

))
t (a,2a,4a,b;n) = 1

6

(
r (a, a, a,2b;16n +14a +2b)− r

(
a, a, a,2b;4n + 7a +b

2

))
.
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Theorem 2.49. (Sun, [3]) Let a,b ∈ {1,3,5, . . .} and n ∈N. Then

t (a, a,6a,b;n) = 1

2

(
r (a, a,3a,2b;16n +16a +2b)− r (a, a,6a,b;8n +8a +b)

)
.

Theorem 2.50. (Sun, [3]) Suppose a,b,n ∈N, 2 - a and b ≡ 2 (mod 4). Then

t (a, a,b,b;n) = r (a, a,b,b;4n +a +b).

Theorem 2.51. (Sun, [3]) Let a,b ∈ {1,3,5, . . .} and n ∈N. Then

t (a, a,b,b;n) = r (a, a,b,b;4n +a +b)− r (a, a,b,b;2n + (a +b)/2).

Theorem 2.52. (Sun, [3]) Let a,b,n ∈N, 2 - ab and 4 | a −b. Then

t (a,2a,b,2b;n) = r (a,2a,b,2b;8n +3(a +b))− r (a,2a,b,2b;4n +3(a +b)/2
)
.

Theorem 2.53. (Sun, [3]) Let n ∈N. Then

t (1,1,1,6;n) = 1

6

(
r (1,1,1,6;32n +36)− r (1,1,1,6;8n +9)

)
.

Theorem 2.54. (Sun, [3]) Let n ∈N. Then

t (1,1,1,7;n) = 4r (1,1,1,7;4n +5)−2r (1,1,1,7;8n +10),

t (1,7,7,7;n) = 4r (1,7,7,7;4n +11)−2r (1,7,7,7;8n +22).

Theorem 2.55. (Sun, [3]) Let n ∈N. Then

t (1,2,6,6;n) = 2r (1,2,6,6;8n +15)− r (1,2,6,6;16n +30),

t (2,2,3,6;n) = 2r (2,2,3,6;8n +13)− r (2,2,3,6;16n +26).

Sun [3] also left some relations of t (a;b;c;d ;n) and r (a;b;c;d ;n) as conjectures.

Interested readers may go through the conjectures in [3].

Again in 2019, Sun [4] has come up with several relations of t (a;b;c;d ;n) and r (a;b;c;d ;n).

We state those results in the next.

14



Theorem 2.56. (Sun, [4]) Let a,b ∈Z+ with 2 - ab. For n = 0,1,2, . . . we have

t (a,2a,2a,2b;n) = 1

2
r (a, a,4a,2b;8n +5a +2b).

Theorem 2.57. (Sun, [4]) Let a,b ∈Z+ with ab ≡−1 (mod 4). For n ∈Z+ we have

t (a, a,2a,b;n) = 2r (a,4a,8a,b;8n +4a +b).

Theorem 2.58. (Sun, [4]) Let a,b ∈Z+ with 2 - ab. For n ∈Z+ we have

t (a,3a,3a,2b;n) = r (3a,3a,4a,2b;8n +7a +2b).

Theorem 2.59. (Sun, [4]) Let a,b,n ∈ Z+ with 2 - ab. For n ∈ Z+ with n ≡ a−b
2 (mod 2)

we have

t (a,3a,b,3b;n) = 4r (a,3a,b,3b;2n +a +b).

Theorem 2.60. (Sun, [4]) Let a,b ∈Z+ with ab ≡−1 (mod 4). For n ∈Z+ we have

t (2a,2a,3a,b;n) = 1

3
r (a,3a,16a,4b;32n +28a +4b).

Theorem 2.61. (Sun, [4]) Let a,b ∈Z+ with ab ≡ 1 (mod 4). For n ∈Z+ we have

t (a,6a,6a,b;n) = 1

3
r (a,3a,48a,4b;32n +52a +4b).

Theorem 2.62. (Sun, [4]) Suppose a,b,n ∈Z+, (a,b) = 1 and there is an odd prime divi-

sor p of b such that ( a(8n+9a)
p ) =−1. Then

t (a,4a,4a,b;n) = 1

2
(r (a,4a,4a,b;8n +9a +b)− r (a,4a,4a,4b;8n +9a +b)).

Theorem 2.63. (Sun, [4]) Suppose a,b,n ∈Z+, (a,b) = 1, b 6≡ 0,−a (mod 4) and there is

an odd prime divisor p of b such that ( a(8n+9a)
p ) =−1. Then

t (a,4a,4a,b;n) = 1

2
r (a,4a,4a,b;8n +9a +b).

Corollary 2.64. (Sun, [4]) Suppose a,b,n ∈Z+, 3 - a, 3 | b, b 6≡ 0,3a (mod 4) and 3 | n−a.
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Then

t (a,4a,4a,b;n) = 1

2
r (a,4a,4a,b;8n +9a +b).

Corollary 2.65. (Sun, [4]) Suppose m,n ∈ Z+, m ≡ 1,2 (mod 4) and n ≡ 1,3 (mod 5).

Then

t (1,4,4,5m;n) = 1

2
r (1,4,4,5m;8n +5m +9).

Theorem 2.66. (Sun, [4]) Suppose a,b,n ∈Z+, (a,b) = 1 and there is an odd prime divi-

sor p of b such that ( a(4n+5a)
p ) =−1. Then

t (a, a,8a,b;n) = 1

2
(r (a, a,8a,b;8n +10a +b)− r (a, a,8a,4b;8n +10a +b)).

Theorem 2.67. (Sun, [4]) Suppose a,b,n ∈Z+, (a,b) = 1 and there is an odd prime divi-

sor p of b such that ( a(4n+5a)
p ) =−1. Assume that a is even or ab ≡ 1,4,5 (mod 8) for odd

a. Then

t (a, a,8a,b;n) = 1

2
r (a, a,8a,b;8n +10a +b).

Theorem 2.68. (Sun, [4]) Let n ∈Z+ Then

t (1,4,7,8;n) = 2r (1,4,7,8;2n +5) for n ≡ 3 (mod 4),

t (1,4,8,15;n) = 2r (1,4,8,15;2n +7) for n ≡ 2 (mod 4),

t (3,5,12,24;n) = 2r (3,5,12,24;2n +11) for n ≡ 3 (mod 4),

t (3,5,20,40;n) = 2r (3,5,20,40;2n +17) for n ≡ 3 (mod 4).

Theorem 2.69. (Sun, [4]) For n ∈Z+ we have

t (2,3,3,4;n) = 2r (2,3,3,4;2n +3) for n ≡ 2,3 (mod 4),

t (2,3,3,12;n) = 2r (2,3,3,12;2n +5) for n ≡ 0,1 (mod 4),

t (2,3,3,24;n) = 4r (2,3,3,24;2n +8) for n ≡ 2 (mod 4),

t (2,3,3,36;n) = 2r (2,3,3,36;2n +11) for n ≡ 2,3 (mod 4),

t (1,1,6,12;n) = 2r (1,1,6,12;2n +5) for n ≡ 0,3 (mod 4),

t (1,1,6,16;n) =

r (1,1,3,8;n +3) if n ≡ 2 (mod 8),

4r (1,1,3,8;n +3) if n ≡ 4 (mod 8).
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Theorem 2.70. (Sun, [4]) For n ∈Z+ with n ≡ 3,5 (mod 8),

t (1,1,2,12;n) = 4r (1,1,4,6;n +2) = 8

3
r (1,1,1,6;n +2)

t (3,3,4,6;n) = 8

3
r (2,3,3,3;n +2).

Using Sun’s [4] technique one can find several similar relations like

t (3,3,4,18;n) = 2r (3,3,4,18;2n +7) for n ≡ 0,1 (mod 4),

t (1,3,8,12;n) = 4r (1,3,8,12;n +3) for n ≡ 2,4 (mod 8),

t (1,1,2,28;n) = 4r (1,1,2,28;n +4) for n ≡ 1,3 (mod 8),

t (1,3,4,24;n) = 4r (1,3,4,24;n +4) for n ≡ 1,3 (mod 8),

t (2,3,3,48;n) = r (2,3,3,48;2n +14) for n ≡ 0 (mod 8),

t (1,1,8,14;n) = 8r (1,1,8,14;n +3) for n ≡ 1 (mod 8),

t (1,1,10,20;n) = 4r (1,1,10,20;n +4) for n ≡ 1 (mod 8),

t (1,1,14,16;n) = 4r (1,1,14,16;n +4) for n ≡ 1 (mod 8),

t (1,2,7,14;n) = 8r (1,2,7,14;n +3) for n ≡ 1 (mod 8),

t (1,1,8,30;n) = 4r (1,1,8,30;2n +10) for n ≡ 1 (mod 8),

t (1,3,4,16;n) = 4

3
r (1,3,4,16;2n +6) for n ≡ 1 (mod 8),

t (3,3,10,48;n) = 4r (3,3,10,48;2n +16) for n ≡ 1 (mod 8),

t (1,1,8,14;n) = 4r (1,1,8,14;2n +6) for n ≡ 3 (mod 8),

t (2,15,15,24;n) = 4r (2,15,15,24;2n +14) for n ≡ 3 (mod 8),

t (5,5,6,8;n) = 4r (5,5,6,8;2n +6) for n ≡ 3 (mod 8),

t (1,3,12,48;n) = 4

3
r (1,3,12,48;2n +16) for n ≡ 4 (mod 8),

t (2,4,5,5;n) = 4r (2,4,5,5;n +2) for n ≡ 5 (mod 8),

t (4,7,7,14;n) = 4r (4,7,7,14;n +4) for n ≡ 5 (mod 8),

t (1,1,16,30;n) = 4r (1,1,16,30;2n +12) for n ≡ 5 (mod 8),

t (1,1,30,40;n) = 4r (1,1,30,40;2n +18) for n ≡ 5 (mod 8),

t (1,3,16,36;n) = 4

3
r (1,3,16,36;2n +14) for n ≡ 5 (mod 8),
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t (2,3,3,32;n) = 4r (2,3,3,32;2n +10) for n ≡ 5 (mod 8),

t (2,7,7,24;n) = 4r (2,7,7,24;2n +10) for n ≡ 5 (mod 8),

t (3,3,10,24;n) = 4r (3,3,10,24;2n +10) for n ≡ 5 (mod 8),

t (1,7,16,16;n) = 4r (1,7,16,16;n +5) for n ≡ 6 (mod 8),

t (2,3,3,48;n) = 4r (2,3,3,48;2n +14) for n ≡ 6 (mod 8),

t (1,1,10,20;n) = 4r (1,1,10,20;n +4) for n ≡ 7 (mod 8),

t (2,4,5,5;n) = 4r (2,4,5,5;n +2) for n ≡ 7 (mod 8),

t (4,7,7,14;n) = 4r (4,7,7,14;n +4) for n ≡ 7 (mod 8),

t (1,1,14,16;n) = 4r (1,1,14,16;2n +8) for n ≡ 7 (mod 8),

t (5,5,6,40;n) = 4r (5,5,6,40;2n +14) for n ≡ 7 (mod 8).

3 Conclusion

There are still active conjectures on the relations between t (a;b;c;d ;n) and r (a;b;c;d ;n).

Many active researchers are also working in this field to prove new relations.
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1 Introduction

The notions metric space, topological space are defined as a set endowed with a struc-

ture designed for several generalisation. As people proceeded in its journey of research

and development of mathematics, it turned out that some sets exhibit properties simi-

lar to finite sets. In the categories of topological spaces and metric spaces, these almost

finite objects are termed as Compact Spaces. After decades of working with different

topological spaces mathematical world has realized that great proportions of mathe-

matical theories turn out to be following.

1. Trivial for finite sets.
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2. True and reasonably simple for infinite compact spaces.

3. Either false or extremely difficult to prove for non compact spaces.

Or, it is not always handy to work with non compact spaces. After years of studying a

non compact topological space X , it is realised that for non compact spaces it is often

convenient to construct a space which contains X as a subspace and itself compact.

Question arises how it will work. So, Realizing a space X is a subspace of Y (compact),

properties of larger space Y often gives new insight into those of X itself. The more

we understand a space more it will help for further study. Compactification in general

topology mainly deals with construction of specific Y ’s. for example we can observe

the real line R is not compact because it contains sequences such as 1,2,3, ... which are

trying to escape the real line, and are not leaving behind any convergent subsequences.

However, one can often recover compactness by adding a few more points to the space.

For instance, one can compactify the real line by adding one point at either end of the

real line, +∞ and −∞. The resulting object, known as the extended real line [−∞,+∞],

can be given a topology. The extended real line is compact: any sequence {xn} of ex-

tended real numbers will have a subsequence that either converges to +∞, converges

to −∞, or converges to a finite number.

Compactification is a way to take a space X that is not compact, and to add a little

bit to it in such a way that we produce a new compact space. To be more precise, we

want to construct a compact space X such that X is homeomorphic to an open dense

subset of X . We want it to be dense because we want to alter X as little as possible,

which means we don’t want to have to add very much to X in order to get to X . (Here

required compact space is written as X to be observable as X is dense in its compacti-

fication).

2 Some Prerequisites

In this chapter, the basic results which will be used for the study of Compactification

directly or indirectly are mentioned in briefly.

Heine-Borel Theorem: Every open cover of a closed and bounded subset of R ( space

of real numbers) has a finite subcover.
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Tychonoff Theorem: Arbitrary product of compact spaces are compact.

Indeed Heine-Borel theorem and Tychonoffs theorem set the definition for a Topolog-

ical space having similar properties those of closed and bounded subset of R so called

compact spaces, defined as following :

2.1 Compact Space

X , a topological space is said to be a compact space if and only if every open cover of

X has a finite subcover.

For example, (X ,T ) be a topological space where X is a set and T = {φ, X } is the topol-

ogy. Then trivially, X is a compact space.

Again, for a,b in R, [a,b] being a closed and bounded subset of R is compact.

Identifying Compact Spaces

• Every closed subspace of a compact space is compact.

• Every compact subspace of a Hausdorff space (The space in which two different

points can be separated by two disjoint open sets) is closed.

• A continuous image of a compact space is a compact space.

• Arbitrary Product space of compact spaces (product topology) are compact. (by

Tychonoff theorem).

• A subspace A of Rn is compact if it is closed and bounded in the euclidean metric

or the square metric.

2.2 Separation Properties

X be a topological space. We can separate two subsets of X by following :

1. Separation by open sets.

2. Separation by continuous mapping.

2.2.1 Separation Axioms

The separation axiom are listed below.

T0 space: each pair of distinct points x and y either there exist an open set containing
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x not containing y or there exist an open set containing y not containing x.

T1 Space: each pair of distinct points x and y either there exist an open set containing

x not containing y and there exist an open set containing y not containing x.

T2(Hausdorff space): For distinct x and y in X there exist a disjoint pair of open set U

containing x and V containing y .

T3(Regular space) : T1 Space and for a closed set in A in X and x not in A there exist a

disjoint pair of open set U containing A and V containing x.

T3 1
2

(Completely regular space): T1 Space and for a closed set A and x not in A there

exist a continuous function f , f : X → [0,1] such that f (x) = 1 and f (A) = 0.

T4(Normal space): T1 Space and for two disjoint closed sets A and B there exist a con-

tinuous mapping f , f : X → [0,1] such that f (A) = 1 for all a in Aand f (B) = 0 for all b

in B .

T4 1
2

(Completely Normal space): X is completly normal if and only if for every pair

A,B of separated sets in X (closure of one doesnot intersect another), there exist dis-

joint open sets containing them or equivalently X is said to be completely normal if

every subspace of X is normal.

We can observe the following arrow diagram:

T0 space → T1 Space → Hausdorff space (T2) → Regular space(T3) → Completely reg-

ular space (T3 1
2

) → Normal space (T4) → Completely space( T4 1
2

). In the following

segment, we have some basic observations:

• In the above arrow diagram, each member in the right hand side stronger than

its left ones.

• Separation by continuous mapping implies separation by open sets.

• All the properties in separation axiom upto completely regular are hereditary and

closed under product.

• Every compact Hausdorff spaces are normal.

Lets discuss some important mappings as follows:

Homeomorphism (Topological Equivalence) A mapping f is said to be homeomor-

phism if

• f is one one and onto.
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• f is continuous.

• f −1 continuous.

Embedding (Topological Insertion) A mapping f is said to be embedding if

• f is one one.

• f is continuous.

• f is open or closed mapping.

An Embedding can be seen as homeomorphism, setting range as its co-domain.

Automorphism A mapping f is said to be automorphism if it is a topological homeo-

morphism from a topological space X to itself.

3 Compactification background

Lets define compactification formally:

3.1 Definition

Let X be topological space. A Compactification of X is a compact hausdorff space Y

containing X as a subspace such that X is dense in Y . And two Compactifications Y 1

and Y 2 of X is said to be equivalent if there is a homeomorphism h : Y1 → Y2 such that

h(x) = x for every x in X .

Example : For a,b in R, (a,b) is contain in compact hausdorff space [a,b]. And (a,b) =
[a,b]. Hence [a,b] is a compactification of (a,b).

As we can see, being a subset of a compact Hausdorff space (or normal and hence com-

pletely regular), any compactifiable space necessarily be a completely regular space.

It is very much worthy to talk about intuitive or basic kind of compactification,

which actually enlighten the path of Compactification theory, the Alexandorff one point

compactification.
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3.2 Motivation and History of One-Point Compactification

In order to move past the naive intuition behind the historical notion of finiteness,

the mathematical community required the leadership and direction of mathemati-

cians such as Bernhard Riemann, John Von Neumann and Marshall Stone. Riemann

(1826-1866) provided the first example of a compactification using the intuitive infinite

and non-compact topological space C with the construction of the Riemann sphere in

1858-1859. The Riemann sphere is what is known as the one point compactification

(defined later) of the complex plane C - it adds one point to represent infinity at the

north pole and transform the plane to the surface of the 2- sphere S2.

λ =
(x + i y)

(1− z)
, λ ∈C,

where (x,y,z) ∈ {(x, y, z) : x2 + y2 + z2 ≤ 1} à {(0, 0, 1)}

This simple and elegant example of compactification intrigued mathematician and

physicists, because it allowed for the reduction of seemingly impossible complex an-

alytic problems on S2. Subsequently, mathematicians were interested in generalizing

the notion of compactification to any topological space. And after that many fasci-

nating ideas arose from different field of studies, which leads to many unnoticed con-

struction in mathematical history. Among them the simplest but fascinating one is

Alexandorff one-point compactification.

3.3 Definition

If Y is a compact hausdorff space and X is a proper subspace of Y whose closure equals

Y , then Y is said to be a compactification of X . If Y à X equals a single point, then Y is

called the one -point compactification of X .

Construction of Alexandroff one point compactification need some basic property of a

topological space, known as local compactness.

Local Compactness: A space X is said to be locally compact at x if X has a subspace

which is compact neighborhood of x.

Example 1: R is locally compact. The point lies in some interval (a,b), which in turn is

contained in the compact subspace [a,b].

Example 2: Q is not locally compact space .
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3.3.1 Necessary and Sufficient Condition for a Space to Possess “One-Point Com-

pactification”

Theorem 3.1. Let X be a space. Then X is locally compact Hausdorff if and only if there

exists a space Y satisfying the following condition :

(1) X is subspace of Y .

(2) The set Y àX consists of one point.

(3) Y is compact hausdorff space.

if Y and Y ′ are two space satisfying these conditions, then there is a homeomorphism

of Y and Y ′ that equals the identity map on X.

Proof :(Munkers) Step 1. We first verify uniqueness. Let Y and Y ′ be two spaces

satisfying these conditions. Define h : Y → Y ′, and letting h map the single point of

Y àX to the point q of Y ′àX , and letting h equal the identity on X . We show that if U is

open in Y , then h(U ) is open in Y ′. Symmetry then implies that h is homeomorphism.

First, consider the case where U doesn’t contain p. then h(U ) = Y . Since U is open

in Y and is contained in Y , it is open in X . Because X is open in Y ′, the set U is also

open in Y ′, as desired.

Second, suppose that U contains p since C = Y àU is closed in Y , it is compact as

a subspace of Y . Because C is contained in it is an compact subspace of X . Then

because X is a subspace of Y ′, the space C is also a compact subspace of Y ′. Because

Y ′ is Hausdorff, C is closed in Y ′, so that h(U ) = Y ′àC is open in Y ′ as desired.

Step 2. Now we suppose X is locally compact Hausdorff and construct the space

Y . Step 1 gives us an idea how to proceed. Let us take some object that is not a point

of X , denote it by the symbol ∞ for convenience, and adjoint it to X , forming the set

Y = X ∪{∞}. Topologize Y by defining the collection of open sets of Y to consists of (1)

all sets U that are open in X , and (2) all sets of the form Y àC , where C is a compact

subspace of X .

We need check that this collection is, in fact, a topology on Y . The empty set is a set of

type (1), and the space Y is a set of type (2). Checking that the intersection of two open

sets is open involves three cases:

(U1 ∩U2) is of type (1)

(Y àC1)∩ (Y àC2) = Y à (C1 ∪C2) is of type (2).

U1 ∩ (Y àC1) =U1 ∩ (X àC1) is of type (1) .
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because C1 is closed in X. Similarly, union of any collection of open sets is open :

∪Uα =U is of type (1)

∪(Y àCβ) = Y à ( ∩ Cβ) is of type (2)

( ∪Uα)∪ ( ∪ (Y àCβ)) =U ∪ (Y àC ) = Y à (C àU ),

which of type (2), because C àU is a closed subspace ofC and therefore compact.

Now we show X is subspace of Y . Given any open set in Y , we show its intersection

with X is open in X . If U is of type (1), then U ∩ X = U ; if Y àC is of type (2), then

(Y àC )∩ X = X àC ; both of these sets are open in X . Conversely, any set open in X is

of type (1) and therefore open in Y by definition.

To show: Y is compact let ζ be an open covering in Y . The collection ζ must contain an

open set of type (2), say Y àC , since none of the open sets of type (1) contain the point
′∞′. Take all the members of ζ different from Y àC and intersect them with X ; they

form a collection of open sets of X covering C . Because C is compact finitely many of

them cover C ; the corresponding finite elements of ζ will, along with the elements of

Y àC are disjoint neighborhood of X and ∞, respectively, in Y .

Step 3. Finally, we prove the converse. Suppose a space Y satisfying conditions (1)-(3)

exists. Then X is Hausdorff because it is subspace of a Hausdorff space Y . Given x ∈ X ,

we show X is locally compact at X . Choose disjoint open sets U and V of Y containing

x and the single point of Y àX , respectively. The the set C = Y àV is closed in Y , so it is

compact subspace of Y . Since C lies in X , it is also compact subspace of X ; it contains

the neighborhood U ofX .

Here, locally compactness compactness of original space need necessarily and suf-

ficiently for hausdorff property of Y.

It is always convenient to allow topological embedding rather than insist that the

original be actually a subspace of the constructed compact hausdorff space. The fol-

lowing lemma will establish the fact "An Proper embedding give rise to a compactifi-

cation".

Lemma 3.2. Let X be a space; suppose h : X → Z is an embedding of X in the compact

hausdorff space Z . Then there exists a corresponding compactification Y of X ; it has the

property that there is an embedding H : Y → Z that equals h on X . The compactification

Y is uniquely determined up to equivalence.

Keeping this in mind, we restate our definition of compactification as bellow: A
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compactification of a topological space X is defined as a pair ( f ,Y ), where Y is a com-

pact hausdorff space and f is homeomorphism of X onto a dense subspace of y .

3.4 Some Important Examples

One point compactification of the Real Line The circle S1 can be viewed

as a compactification of the real line. Let h be the inverse projection pictured below:

here h[R] = S1-North Pole. We can think h[R] as a ’bent’ topological copy of R, and

the compactification is created by tying together the two ends of R by adding one new

point at infinity (the North Pole).

]
fig : One Point Compactification of Real Line

One point compactification of the Complex Plane As stated the Riemann

sphere S2 is the one point compactification of the plane C.it adds one point to repre-

sent infinity at the north pole and transform the plane to the surface of the 2- sphere

S2.

λ =
(x + i y)

(1− z)
, λ ∈C,

where (x,y,z) ∈ {(x, y, z) : x2 + y2 + z2 ≤ 1} à {(0, 0, 1)}
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One point compactification of the Natural Numbers The one point com-

pactification of N is homeomorphic to the subspace 0∪ { 1
n : n ∈N} of R. The one-point

compactification of N consists of N together with a single point which we can call ∞.

The topological structure is that of the discrete topology on N; and the open neigh-

borhoods of ∞ are by definition the complements of the compact subsets of N. The

compact subsets of N are the finite subsets, so the neighborhoods of ∞ are the sets

with finite complement. The map n → 1
n (where 1

∞ is interpreted as 0) takes this space

to the set K = {0}∪{ 1
n : n ∈N}, and it preserves the topology because the points 1

n are all

isolated, and the neighborhoods of 0 are exactly the sets with finite complement.

3.5 n-Point Compactification

If Y is a compactification of X and Y à X contains n points then compactification is

called n - point compactification.

For example: R∪ {−∞,∞} is an 2-point compactification of R.

4 Čech-Stone Compactification

We have seen one point compactification of a locally compact hausdorff space and it

seems much intuitive and observable. Now we will see a nice abstract construction of

compactification, which is not seem that intuitive.
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4.1 Motivation

This idea of compactification arise from physical science background. John Von Neu-

mann (1903-1957) study of ring of bounded continuous function for his axiomatic for-

mulation of quantum mechanics inspired the notion of maximal compactification for

a space (Murray 1988). In quantum mechanics, each function in the ring represent

potential energy curve of a particle in the phase space X and trivial reality is that no

particle has unbounded potential energy. A discrete state that a particle is in, depends

intrinsically on the particle’s potential energy. Therefore if one discovers that X is vi-

able space for a quantum model then he or she would like to construct maximal phase

space Y such that X can be embedded in Y such that all function on Y are bounded

and continuous.

Von Neumann intuitively realized this and provided the analytic foundations for

this what is now known as C∗- algebra of a topological space X , C∗(X ). Later Alexan-

dorff, Urysohn works on systematic study of compactness and Tikhonov’s paper on

compactification of completely regular spaces in product spaces (1930). Having all

these motivations and ideas, In 1937 Eduard C̆ech and M. H. stone independently

found a compactification of a completely regular space and later it was named Čech

- Stone compactification(Walker). Here we will follow generalized Čech method of

working to construct the Čech - Stone compactification.

4.2 Čech-Stone Compactification

For each Tychonoff space X , we have a compactification (e,β(X )) where e : X → β(X )

is an embedding such that e(X ) is dense in β(X ) and call it the Čech-Stone compacti-

fication. It is characterized by the fact that any continuous map f : X → C of X into a

compact hausdorff space C extends uniquely to a continuous map g : β(X ) → C . As

per mentioned in the previous line, our main interest in the Čech-Stone Compactifica-

tion stems from the extension property it has. Let X be a Tychonoff space, Y is some

other space and suppose f : X → Y is continuous. Let (e,β(X )) be the Čech - Stone

Compactification of X . By means of embedding e, we identify X with e(X ), then f can

be regarded as a map from e(X ) to Y . If we don’t identify X with e(X ) then the prob-

lem amounts to asking whether there exists a map g : β(X ) → Y such that g o e = f .
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However if the space Y is Hausdorff and compact a solution exists and unique.

4.3 Why Completely Regular ??

If Y is a Čech-Stone compactification of X , then X need to be completely regular. So

lets find why is it necessary and sufficient condition for X to be completely regular and

Hausdorff. Searching for this condition needs some ideas , lets state them as defini-

tions for X be topological space and Y is the Čech-Stone compactification of X , Y is

compact hausdorff.

C∗(X ) : the ring of all bounded real valued continuous functions on X .

C∗- embedding : A subspace S of X is said to be C∗- embedded in X if every function

f in C∗(S) extends to a function g in C∗(X ).

Now, X is a topological space C∗-embedded in Y , compact hausdorff. So, question

arise what topological constraints should we put in X such that it can be C∗- embed-

ded in Y (necessarily and sufficiently). Urysohn (1898-1924) came with a answer to the

question with Urysohn extension theorem.

Urysohn Extension Theorem( UET) :

Definition : Two subsets A and B of a space X are completely separated in X if there

exist a continuous mapping f in C (X ) such that f (a) = 0 for all a in A and f (b) = 1 for

all b in B .

Theorem (UET) : A subspace S of a space X is C∗- embedded in X if and only if any

two completely separated set in S are completely separated in X .

Urysohn extension theorem gives us crucial requirement for our desired compactifica-

tion. Namely we need Y to have some collection of subsets that are completely sepa-

rated. As it turns out, we would like the closed subsets of Y to be completely separated.

Andrey Tikhonov (1906-1993) made this choice in 1930 since he was looking for a way

to preserve compactification for subspace of Y . X is C∗- embedded in Y if and only

if two completely separated closed sets in X are completely separated in Y . As closed

subspace of compact space are compact, the closed subspace of Y provide a good hint

of where to start in the compactification process.

In 1931, Tikhonov proved following theorem :

Tychonoff’s theorem:The completely regular space are those spaces which can be em-

bedded in a product of copies of the closed unit intervals I = [0,1].
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To see why this theorem is extremely important let us recall Urysohn Lemma, this

lemma shows an equivalence.

Urysohn’s Lemma : X is normal if and only if A,B disjoint closed sets in X the there

exists a continuous function f : X → [0,1] such that f (a) = 0 for all a ∈ A and f (b) = 1

for all b ∈ B.

As compact hausdorff spaces are normal( Munkers, theorem 32.3) and one points sets

are closed. So above 2 statements give rise to very important topological information

of space X .

No larger class of topological spaces can be studied by means of C∗-embedding into

compact hausdorff space.

Thats why our compactifiable space necessary and sufficiently completely regular and

hausdorff or Tychonoff space. (completely regular+ hausdorff space was named Ty-

chonoff space in the name of Russian Mathematician Andrey Nikolayevich Tikhonov,

a student of Pavel Alexandorv, because of his huge contributions to these theories.)

4.4 Construction of Čech-Stone Compactification

There are some technical requirements that are necessary for a map from a space X

to spaces indexed by family F of functions to be an embedding; These technicalities

are precisely what the embedding lemma discern. We will deal with function that pre-

serves the completely separable structure of completely regular spaces, which are de-

scribed by the following families of functions.

Definition : A family F of functions on X is said to distinguish points if for each pair

of distinct points x and y , there exists an f in F such that f (x) 6= f (y). A family F of

function is said to be distinguish points and closed sets if each closed set A in X and

each point x not in A, there exist a mapping f in A such that f (x) ∉ ( f (A)).

Lemma : (Embedding Lemma) Let F be a family of mapping such that each member

f in F maps X → Y f . Then mapping e : X →∏
Y f defined by (π f o e)(x) = f (x) for all x

in X is continuous. Then

a) The evaluation mapping e : X → ∏
Y f defined by (π f oe)(x) = f (x) for all x in X is

continuous.

b) The mapping e is an open mapping onto e(x) if F distinguishes points and closed

sets.
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c) The mapping e is one-one iff F distinguishes points.

d)The mapping e is an embedding if F distinguishes points and distinguishes points

and closed sets.

Proof :

a) Let πg : Π f ∈F Y f → Yg be the projection map to the space Yg . Then πg o e = g so

that πg o e is continuous. Therefore e must be continuous as g is continuous.

b) Suppose that U is open in X and x ∈U . Choose f ∈ F such that f (x) ∉ f (X àU ).

The set B = {z ∈ e(X )|π f (z) ∉ f (X àU )} is a neighborhood of e(x) as the set is open

(it is defined for components not being in the closed set f (X àU )) and clearly e(x) ∈
B . Moreover, π f (B) ⊂ f (U ) by construction. It is now claimed that f (U ) ⊂ π f (B).

This follows trivially from the definition of a family of functions distinguishing points

and closed sets therefore f (U ) = π f (B) and subsequently f (U ) is a open subset of

(π f o e)(X ). Therefore the evaluation mapping is an open mapping.

c) The definition of distinguishing points implies injectivity of the evaluation func-

tion e.

d) Combining (a), (b) and (c) we see that X ∼= e(X ) as e is continuous, open, injec-

tive, surjective map.

4.5 Existence and Uniqueness

We have developed the tools to finally describe the Čech-Stone compactification for a

completely regular space and it is stronger result then Tychonoff’s theorem for com-

pletely regular spaces.

Existence : Every completely regular space X has a hausdorff compactification βX in

which it is C∗- embedded.

Proof : For each f ∈ C∗(X ), Let I f denote the range of f . As f is bounded I f must be

compact by Heine-Borel. Now we wish to apply the embedding lemma: let F =C∗(X );

Then X can be embedded in
∏

f ∈C∗(X ) I f by the evalution map π f oe(x) = f (x). Now

let βX = e(X ); as e(X ) ⊂ ∏
f ∈C∗(X ) I f , there exists a trivial and closed embedding of

βX ∈∏
f ∈C∗(X ) I f , say ξ. Finally, define the map β f : βX → I f by β f = π f oξ. This gives

us the following commutative diagram:
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X βX

I f

∏
f ∈C∗(X ) I f

e

β f
f

ξ

π f

From this construction, we see that if X is compact, then βX ∼= X . The maximal-

ity of the construction is implicit and comes from the fact that we are embedding X

into compact space indexed by all continuous, bounded function on X . Note that the

uniqueness of the Čech-Stone compactification was proved by Marshell Stone whereas

the existence of the extension was proved by Stone and Čech independently.

Uniqueness Part : (Every completely regular space X has a compacatification βX such

that any mapping of X to a compact space K will extend uniquely to βX ). In terms of

commutative diagram we have :

X βX

K

η

β f
f

Proof: As in the previous theorem, for each g ∈ C∗(K ), let Ig represent the range of K

and let e : K → ∏
g∈C∗(K ) Ig be the evaluation map. As g o f (X ) ⊂ Ig , the Čech-Stone

existence theorem provides that there exists a extension βg o f of (g o f ) to βX .

Claim 1: f uniquely extends to βX .

Suppose we define a mapping h : βX →∏
g∈C∗(K ) Ig such that

πg oh(p) =βg o f (p)

for all p ∈ βX .Then h is continuous as βg o f is continuous (by construction) and sub-

sequently this forces the above composition to be continuous in each Ig . This gives us

the following commutative diagram :
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X

Ig

βX

K
∏

g∈C∗(X ) Ig

Ig

η

hf

e

g o f

βg o f

g
πg

As e is an embedding, by construction, we need to show that h(βX ) ⊂ e(K ) in order

to show that h embeds η i n
∏

g∈C∗(X ) Ig . Note that for each g ∈C∗(K ),βg o f (X ) ⊂ g (K )

so that we have :

h(βX ) = h(clβX (X )) ⊆ e(K ) = cl (K ) = K

where the last equality holds from the compactness of K . Finally, the uniqueness of the

extension h comes directly from the fact that any two extension of f are equivalent on

βX .

4.6 Important Compactifications

To establish examples of compactification, we need the concept of filter and ultra filter.

Filters and Ultrafilters A filter on a set X is a non empty family F of subsets of X such

that

1. ;∉ F .

2. F is closed under finite intersections.

3. If B ∈ F and B ⊂ A then A ∈ F for all A,B ⊂ X .

A filter is an ultrafilter if it is the maximal element in the collection of all filters on X ,

partially ordered by inclusion, that is an ultrafilter is not properly contained in any

filter.

Construction of β(X ) when X is discrete : Here we assume X is a discrete topological

space, this being the hardest case. Here we simply define β(X ) = {U : U is an ultrafilter

on X }. Thus points of β(X ) are just ultrafilters on X . We specify the topology of β(X ). A
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basis for this topology is obtained as follows: for every subset A ⊂ X , define (A) = {U ∈
β(X ) : A ∈U }. The subsets (A) form the basis for the topology on β(X ).

4.6.1 Stone-Čech Compactification of N

For a simple set like N, The Čech-Stone compactification becomes a very complicated

object. The present day description ofβ(N) is as the Stone Space of the Boolean Algebra

P (N). The underlying set of β(N) is the set of all the ultrafilters of N with the family {X :

X ⊂N} as a base for the open sets, where X denotes the set of all the ultrafilters of which

X is an element. The space is β(N) is separable and its cardinality is the maximum

possible that is 2c . The remainder β(N)àN denoted by N∗ is an interest of researches.

4.6.2 Stone -Čech Compactification of R

Instead of β(R), one generally uses β(H); where H is the positive half line [0,∞). This

is because x → −x induces an automorphism of β(R) that shows that β([0, ∞]) and

β([−∞, 0]) are the same thing. In a sense β(R) looks like β(N) in that it is a thin locally

compact space with a large compact lump at the end; this remainder H∗ has some

properties common with N∗. But of course, there are differences like β(R) and H∗ are

connected but β(N) and N∗ are most certainly not.

5 Comparision of Compactifications

Let (e, Y ) and ( f , Z ) be two compactifictions of a space X . Then (e, Y ) is said to be

greater than ( f , Z ), written as (e, Y ) ≥ f , Z ) if there exists a map g : Y → Z such that

g o e = f .

5.1 The Minimal Compactification

Let (Y1, h1) be a one-point compactification of X . For every compactification (Y , h), (Y ,h)≥(Y1, h1)

We may assume X ⊂ Y1, X ⊂ Y and h1, h are the identity maps. Since X has a one-point

compactification, X is locally compact, So X is open in both Y and Y1 .

Let Y1àX = {p} and define f : Y → Y1 by f (y) = y if y ∈ X and f (y) = p if y ∈ Y àX . To

show that (Y , h) ≥ (Y1, h1), we only need to check that f is continuous in each point
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y ∈ Y . If y ∈ X and V is an open set containing f (y) = y in Y1, then y ∈ U = V à {p}

which is open in X and therefore also open in Y . Clearly, f (U ) =U ⊂V If z ∈ Y àX and

V is an open neighborhood of f (z) = p in Y1, then Y1àV = K is a compact subset of X .

Therefore K is closed in Y , so U = Y àK is an open set in Y containing z and f (U ) ⊂V.

5.2 The Maximal Compactification

Let (e, Y ) and ( f , Z ) be two compactification of a space X . Then they are said to be

topologically equivalent if there exists a homeomorphism g : Y → Z such that g o e = f

.

Proposition: The relation ≥ is anti-symmetric upto topological equivalence as far

the Hausdorff compactification is concerned.

Among all the Hausdorff compactifications of a Tychonoff space, surprisingly we

have the Čech-Stone compactification is largest upto a topological equivalence, Let X

be a Tychonoff space and (e, β(X )) be the Čech-Stone Compactification. Now let ( f , Y )

be any compactification of X . Then Y is compact and hausdorff. So by the theorem

due to Stone and Čech in the section the map f : X → Y extends to β(X ), that is, there

exists g : β(X ) → Y such that g o e = f . By definition this means that (e, β(X )) ≥ ( f , Y ).

Thus the Čech-Stone compactification is the largest. And by the proposition above,

upto topological equivalence, the compactification is unique.

6 Conclusion

The set of all compactification of a space X forms a partially ordered set Pc (X ) by ≥.

We have had minimal and maximal compactification in the context of hausdorff com-

pactification, where hausdorff compactifications forms a total ordered subset of Pc (X ).

Many other compactifications have been constructed for various purposes. Many of

them are applicated in different branch of Mathematics such as Probability Theory and

in Physical Sciences also. Current days it is regarded as a very active field of research.
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Abstract In this article,we will discuss the study of some MHD free convection prob-

lems. Here we will discuss the unsteady free convective flow of fluid in the presence

of radiation ,chemical reactions and variable viscosity. We will mainly focus on the in-

fluences of the various parameter namely, Grashof number,Prandtl number, Schmidt

number, heat absorption parameter, radiation parameter ,variable viscosity on the ve-

locity,temperature and concentration.

1 Introduction

Fluid dynamics is that branch of science which deals with the study of the motions

of fluids or that of bodies in contact with fluids.It is futher classified into several sub-

disipline including aerodynamics and hydrodynamics.Aerodynamics is the study of

gases in motion and hydrodynamics is the study of liquids in motion.

Magnetohydrodynamics(MHD) is the study of the magnetic properties and behaviour

of electrically conducting fluids. The field of MHD was initiated by Hannes Alfven for

which he received the Nobel Prize in Physics in 1970. The set of equations which de-

scribes MHD are a combination of the Navier-Stokes equations of fluid dynamics and

Maxwell’s equations of electromagnetism. The central point of MHD theory is that

conductive fluids can support magnetic fields. The presence of magnetic fields leads

to the forces that in turn act on the fluid, thereby potentially altering the geometry and
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strength of the magnetic fields themselves. A key issue for a particular conducting fluid

is the relative strength of the advecting motions in the fluid, compared to the diffusive

effects caused by the electrical resistivity.

There are wide applications of MHD in many branches of science and technology such

as Astrophysics, Engineering, Geophysics, Medical sciences etc.

2 Continuity equations and Navier-Stokes Equations

In fluid dynamics, the continuity equations states that the rate at which mass enters

a system is equal to the rate at which mass leaves the system plus the accumulation of

mass within the system. The differential form of the continuity equations is

δρ

δt
+∇.(ρu) = 0

where ρ is fluid density, t is time, u is the flow velocity vector field.

This equation is also one of the Euler equations.

If the fluid is incompressible i.e ρ is constant, then the equation of continuity takes

the form:

∇.u = 0

which means the divergence of the velocity field is zero everywhere.

The Navier-Stokes equations are nonlinear partial differential equations which math-

ematically express the conservation of momentum and conservation of mass.They arise

from applying Newton’s second law to fluid motion, together with the assumption that

the stress in the fluid is the sum of a diffusing viscous term( proportional to the gra-

dient of velocity) and pressure term. The Navier-Stokes equations are expressible in

vector form as below:
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δ~u

δt
+ (~u.~∇)~u = ~F − 1

ρ
~∇p +ν~∇2~u + ν

3
~∇(~∇.~u)

where ~F is the body force , ~u is the fluid velocity, ρ is the density, p is the fluid pressure,

ν is the kinematic viscosity of the fluid.

3 Prandtl’s boundary layer theory

A solution of Navier-Stokes equations is called a velocity field which describes the fluid

velocity at a given point in space and time.But these equarions are non-linear partial

differential equations ,the exact solution for a particular flow problem of these equa-

tions are either difficult or impossible to obtain.

At the beginning of 20th century, the German physicist L.Prandtl introduced the con-

cept of boundary layer theory of fluid flow for small viscosity.He simplified the Navier-

Stokes equations to mathematically tractable form which are called the Prandtl bound-

ary layer equations.

Prandtl proved theoretically and experimentally that a flow about a solid body can

be divided into two regions:

⇒ a very thin layer in the neighbourhood of the body called boundary layer, where

friction plays an important role.

⇒ remaining region outside the layer where friction may be neglected.

In boundary layer the velocity of the fluid increases from zero at the

wall(no slip) to its full value which corresponds to external frictionless flow.

4 Dimensionless Numbers

The inertia force is the product of mass and acceleration.We know that inertia force

always exists in all flow problems. Besides the inertia force, there always exist some

additional forces which are responsible for fluid motion.The required conditions for

dynamic similarity can always be obtained by considering the ratio of the inertia force

and any one of the remaining forces (e.g. viscous force, gravity force, pressure force
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and so on).Some of the dimensionless numbers are discussed below:

4.1 Reynolds number

The Reynolds number Re is defined as the ratio of inertia force to viscous force of the

flowing fluid i.e

Re = Iner t i a f or ce
V i scous f or ce

If for any flow problem Re is small then we can ignore the inertia force, whereas if

Re is quite large then we can neglect the effect of viscous force and consequently the

fluid may be treated as non-viscous fluid.

4.2 Froude number

The Froude number F r is defined as the ratio of inertia force to gravity force i.e.

F r = Iner t i a f or ce
Gr avi t y f or ce

When the gravity force is predominating, Froude number must be the same for

dynamic similiarity of two forces.

4.3 Grashof number for heat transfer

The Grashof number Gr for heat transfer is the ratio of the product of inertia force and

buoyancy force to the square of viscous force i.e.

Gr = Iner t i a f or ce∗Buoy anc y f or ce
(vi scous f or ce)2
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Grashof number is important in free convection heat transfer where the only driv-

ing force is the buoyancy force.In free convection, the flow field is induced by buoy-

ancy forces, which arise from density differences caused by temperature variations in

the field.

4.4 Grashof number for mass transfer

The Grashof number Gm for mass transfer is defined as ratio of Buoyancy force due to

concentration gradient to the viscous force i.e.

Gm = Buoy anc y f or ce due to concentr ati on g r adi ent
vi scous f or ce

Gm is important in free convection involving mass transfer. This is because the

density difference in free convection mass transfer is due to species concentration dif-

ference and hence the buoyancy force in natural convection mass transfer is incorpo-

rated into Gm.

4.5 Prandtl number

The Prandtl number Pr is defined as the ratio of molecular diffusivity of momentum

to the molecular diffusivity of heat i.e.

Pr = Mol ecul ar di f f usi vi t y o f momentum
Mol ecul ar di f f usi vi t y o f heat

The Prandtl number is a measure of value of momentum and heat in the velocity

and thermal boundary layer. In other words it measures relative thickness of velocity

and thermal boundary layers.
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4.6 Schmidt number

The Schmidt number Sc is the ratio of momentum diffusivity to mass diffusivity of the

species i.e.

Sc = Momentum di f f usi vi t y
M ass di f f usi vi t y

It physically relates the relative thickness of velocity and concentration boundary

layer.It provides a measure of the relative effectiveness of momentum and mass trans-

port by diffusion in a fluid medium, for a given fluid flow involving convection mass

transfer.

5 Study of some MHD free convective problems

The field of MHD was initiated by Hannes Alfven for which he received the Nobel Prize

in Physics in 1970.Its wide applications in many branches of science and technology

has attracted numerous scientist and engineers for the last several decades.Several au-

thors has made there notable contribution in MHD.

In this subsection we will discuss some MHD free convective problems:

• In 2005, O.D Makinde [7] studied free convection flow with thermal

radiation and mass transfer past a moving vertical porous plate.The plate is main-

tained at a uniform temperature with uniform species concentration and the

fluid is considered to be gray, absorbing-emitting.For different parameters in-

volving the problem, the velocity, temperature and concentration distribution is

discussed below:

⇒ A decrease in suction parameter, Schmidt Number and Prandtl Number will

enhance the fluid velocity.
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⇒ An increase in Grashof number and thermal radiation intensity will enhance

the fluid velocity and the boundary layer.

⇒ An increase in thermal radiation interaction and a decrease in the fluid suc-

tion at the plate will enchance the fluid temperature.

⇒ A decrease in fluid suction and Schmidt Number will enhance the fluid con-

centration.

• D.Sharma,N.Ahmed,H.Deka [8] have studied the MHD free convection and mass

transfer flow past an accelerated vertical plate with chemical reaction in pres-

ence of radiation.By assigning some selected values of parameters , velocity, tem-

perature and rate of heat and mass transfer are investigated.Below are some of

the results obtained:

⇒ Velocity decreases with the increase in magnetic parameter.

⇒ The radiation parameter decreases the temperature distribution in the ther-

mal boundary layer.

⇒The increase in radiation parameter leads to decrease the boundary layer thick-

ness and to enhance the heat transfer rate in the presence of thermal buoyancy

force.

⇒ Due to the effect of radiation the rate of heat transfer from the plate to the fluid

gets increased.

⇒ Schmidt number and Chemical reaction parameter increases the rate at which

the mass gets transfered.
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• P.Ramakrishna Reddy and M.C. Raju [5] have studied unsteady free convective

flow of a double diffusive fluid past a moving vertical porous plate in the pres-

ence of thermal radiation and first order homogeneous chemical reaction.Using

perturbation technique (Chamkha [2], P.Ram,A.Kumar and H.Singh [4]),the solu-

tion of PDE along with boundary condition is obtained to investigate the effects

of various parameters on velocity and temperature fields in the boundary layer

generated on the surface.Below are some of the results obtained:

⇒ As Prandtl number increases ,temperature of fluid decreases.

⇒ The temperature profiles have significant appearance near the plate for all

values of Reynolds number but as the values of Reynolds number increases, tem-

perature decreases and reaches ambient temperature far away from the plate.

⇒ Temperature of the fluid decreases as the radiation parameter increases.

⇒ Temperature increases for increasing values of absorption parameter but re-

verse trend in the presence of generation parameter.

⇒ Increasing value of Schmidt number decreases concentration

⇒ Increasing value of chemical reaction parameter decreases the concentration.

⇒ Velocity increases on increasing the values of thermal Grashof number.

⇒ Velocity increases on increasing the values of Reynolds number(Re).

• R .Biswas and M,Afikuzaman [6] have studied the MHD free convection and heat

transfer fluid flow through a semi-infinite vertical porous plate with the effects
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of chemical reaction.An explicit finite difference technique has been used to ob-

tain the numerical results of the problem and the physical situation has been

carried out for the different values of various parameters on velocity, temper-

ature and concentration through a vertical porous permeable plate within the

boundary.Below are some of the results obtained:

⇒ Velocity decreses with the increase of magnetic parameter.

⇒ Velocity decreases due to the increase of chemical reaction.

⇒ Velocity increases due to the increase of Grashof number(Gr).

⇒ Velocity decreases with the increase of magnetic parameter and Prandtl num-

ber.

⇒ Temperature decreases with the increase in Schmidt number

⇒ Temperature increases with the increase of heat source parameter

⇒ Chemical reaction decreases concentration profiles.

6 Conclusion

As we have seen for an unsteady free convective flow of fluid, temperature,velocity

and concentration has been influence by various parameters.Those results that are ob-

tained will help researchers to do further research in MHD convection problems.
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1 Construction by composition

Known constructions of irreducible polynomials depend on the composition of an ini-

tial irreducible polynomial with a further polynomial or rational function. Often this

process can be iterated or continued recursively to produce an infinite sequence of

irreducible polynomials of increasing degrees. The following theorem was employed

by several authors to give iterative constructions of irreducible polynomials over finite

fields.
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Theorem 1.1. [4, 5] Let, f , g ∈ Fq [y] be coprime polynomials and let Q ∈ Fq [y] be an

irreducible polynomial of degree n. Then the composition

H(y) = g (y)nQ
( f (y)

g (y)

)
is irreducible over Fq if and only if f −αg is irreducible for any zero α ∈ Fqn of Q.

A further extension of the theorem is produced in [14], which is also instrumental

in the construction of irreducible polynomials of relatively higher degree from given

ones.

Theorem 1.2. [10] Let Q ∈ Fq [y] be irreducible of degree n. Then for any a,b,c,d ∈ Fq

such that ad −bc 6= 0,

H(y) = (c y +d)nQ
(ay +b

c y +d

)
is also irreducible over Fq .

Theorem 1.3. [10] Let t be a positive integer and Q ∈ Fq [y] be irreducible of degree n and

exponent e (equal to the order of any root of Q ). Then P (y t ) is irreducible over Fq if and

only if

(a) (t , (qn −1)/e) = 1

(b) each prime factor of t divides e, and

(c) if 4|t then 4|(qn −1).

Agou [3] has established a criterion for f (g (y)) to be irreducible over Fq , where

f , g ∈ Fq [y] are monic and f is irreducible over Fq . This criterion was used in Agou

[3] to characterize irreducible polynomials of special types such as f (xpr −ax), f (xp −
x − b) and others. Such irreducible compositions of polynomials are also studied in

Cohen [5], Long, and Ore . Irreducibility criteria for compositions of polynomials of

the form f (x t ) have been established by Agou [1, 2, 3], Butler, Cohen, Pellet, Petterson,
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and Serret. Berlekamp and Varshamov and Ananiashvilii discussed the relationship

between the orders of f (x t ) and that of f (y).

Theorem 1.4. [11] Let q be an odd prime power. If P is an irreducible polynomial of

degree n over Fq , then xnQ(x + x−1) is irreducible over Fq if and only if the element

P (2)P (−2) is a non-square in Fq .

We briefly describe some constructive aspects of irreducibility of certain types of

polynomials, particularly binomials and trinomials.

Definition 1.5. [14] A binomial is a polynomial with two nonzero terms, one of them

being the constant term.

Definition 1.6. [14] A trinomial is a polynomial with three nonzero terms, one of them

being the constant term.

Irreducible binomials can be characterized explicitly. For this purpose it suffices to

consider nonlinear, monic binomials.

Theorem 1.7. Let a ∈ Fq and let p be the characteristic of Fq . Then the trinomial xp −
x −a is irreducible in Fq [y] if and only if it has no root in Fq .

The fact that xp − x − a is irreducible over Fp if a ∈ F∗p was already established by

Serret [2597, 2600]. See also Dickson [6], [[6], Part I, Chapter 3] and Albert [, Chapter 5]

for these results.

If we consider more general trinomials of the above type for which the degree is a

higher power of the characteristic, then these criteria need not be valid any longer. In

fact, the following decomposition formula can be established.

Theorem 1.8. [14] For xp −x−a with a being an element of the subfield K = Fr of F = Fq

we have the decomposition

xq −x −a =
q/r∏
j=1

(xr −x −β j )
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in Fq [y], where the β j are the distinct elements of Fq with TrF /K (β j ) = a.

Theorem 1.9. [12, 13] Let P (y) = xn + an−1xn−1 +·· ·+ a1x + a0 be an irreducible poly-

nomial over the finite field Fq of characteristic p and let b ∈ Fq . Then the polynomial

P (xp −x −b) is irreducible over Fq if and only if the absolute trace TrF /K (nb −an−1 6= 0.

The above theorem was shown in this general form by Varshamov [12, 13]; see also

Agou [3]. The case b = 0 received considerable attention much earlier. The corre-

sponding result for b = 0 and finite prime fields was stated by Pellet and proved in

Pellet [14]. Polynomials f (xp − x) over Fp with deg(f) a power of p were treated by

Serret. The case b = 0 for arbitrary finite fields was considered in Dickson [850], Part

I, Chapter 3] and Albert [70, Chapter 5]. More general types of polynomials such as

f (xp −ax), f (xp −ax−bx) and others have also been studied, see Agou [1, 2, 3], Cohen

[5], Long, Long and Vaughan, and Ore.

2 Recursive constructions

Theorem 2.1. [8] Let q = p s be a prime power and let f (y) = ∑n
u=0 cu xu be a monic

irreducible polynomial over Fq . Denote Fq = F and Fp = K . Suppose that there exists an

element δ0 ∈ Fq such that f (δ0) = a with a ∈ F∗p , and

TrF /K (nδ0 + cn−1.TrF /K ( f ′(δ0))) 6= 0,

where f ’ is the formal derivative of f.

Theorem 2.2. [8, 9] Let δ ∈ F∗2n and f1(y) = ∑n
u=0 cu xu be a monic irreducible polyno-

mial over F2n , whose coefficients satisfy the conditions

TrF /K

(c1δ

c0

)
= 1

and

TrF /K

(cn−1

δ

)
= 1,
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where F2n = F and F2 = K . Then all the terms in the sequence ( fk (y))k≥1 defined as

fk+1(y) = x2k−1n fk (x +δ2x−1),k ≥ 1,

are irreducible polynomials over F2n .

Theorem 2.3. [8] Let f (y) =∑n
i=0 ci xi be irreducible over F2m of degree n. Denote F2m = F

and F2 = K . Suppose that TrF /K (c1/c0) 6= 0 and TrF /K (cn−1/cn) 6= 0. Define the polyno-

mials ak (y) and bk (y) recursively by a0(y) = x,b0(y) = 1 and for k ≥ 1

ak+1(y) = ak (y)bk (y),

bk+1(y) = a2
k (y)+b2

K (y).

Then

fk (y) = (bk (y))n f (ak (y)/bk (y))

is irreducible over F2m of degree n2k for all k ≥ 0.
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2010 Mathematical Sciences Classification. Primary 11B39, 11D99; Secondary 11B83.

Keywords. Topological Entropy, Hausdorff dimension, Homeomorphisms.

1 Introduction

Let f : X → X be continuous and Y ⊂ X . The topological entropy h( f ,Y ) will be defined

much like Hausdorff dimension, with "size" of a set reflecting how f acts on it rather

than its diameter. Let G be a finite open cover of X . We write E ≺ G if E is contained

in some member of G and {Ei } ≺ G if every Ei ≺ G . Let n f ,G (E) be the biggest non-

negative integer such that

f k E ≺G f or al l k ∈ [0,n f ,G (E));
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n f ,G (E) = 0 if E ⊀G and n f ,G (E) =+∞ if all f k E ≺G . Now set

DG (E) = exp(−n f ,G (E)) and DG (ξ,λ) =Σ∞
i=1DG (Ei )λ

for ξ= {Ei }∞i=1 and λ ∈ R. Define a measure mG ,λ by

mG ,λ(Y ) = l i mε→0i n f {DG (ξ,λ) : ∪Ei ⊃ Y and DG (Ei ) < ε}.

Notice that mG ,λ(Y ) ≤ mG ,λ′(Y ) for λ > λ′ and mG ,λ(Y ) ∉ {0,+∞ for at most one λ.

Define

hG ( f ,Y ) = i n f {λ : mG ,λ(Y ) = 0} and f i nal l yh( f ,Y ) = supG hG ( f ,Y )

where G ranges over all finite open covers of X . For Y = X we write h( f ) = h( f , X ).

Proposition 1.1. If X is compact, then h( f ) equals the usual topological entropy.

Proposition 1.2. (a) If f1 : X1 → X1 and f2 : X2 → X2 are topologically conjugate for Y1 ⊂
X1. (b) h( f , f (Y )) = h( f ,Y ). (C) h( f ,∪∞

i=1Yi ) = supi h( f ,Yi ). (d) h( f m ,Y ) = mh( f ,Y ) for

m > 0.

Theorem 1.3. Let f : X → X be a continuous map of a compact metric space and µ ∈
M( f ). If Y ⊂ X and µ(Y ) = 1, then hµ( f ) ≤ h( f ,Y ).

Lemma 1.4. Let α be a finite Borel partition of X such that every x ∈ X in the closures of

atmost M sets of α. Then

hµ( f ,α) ≤ h( f ,Y )+ l og M .

Lemma 1.5. Let G be a finite open cover of X . For each n > 0 there is a finite Borel

partition αn of X such that f kαn ≺ G for all k ∈ [0,n) and at most n card G sets in αn

can have a point in all their closures.

Lemma 1.6. Given a finite Borel partition β and ε > 0 there is an open cover G so that

Hµ(β|α) < ε whenever α is a finite Borel partition with α≺G .

Lemma 1.7. Let

R(N ,m, t ) = {a ∈ {1, ..., N }m : H(di st a) ≤ t }.
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Then fixing N and t,

l i mm→∞sup
1

m
l og car d R(N ,m, t ) ≤ t .

Lemma 1.8. Suppose f : X → X is a continuous map of a topological space, B an open

cover of X , β a finite cover of X and M a positive integer so that f kβ≺B for all k ∈ [0, M).

For t ≥ 0 define

Q(t ,β) = {x ∈ X : l i mn→∞i n f (i n f {H(q) : q ∈ Di stβ(x,n)}) ≤ t }.

Then hB( f ,Q(t ,β)) ≤ t/M .

Theorem 1.9. Let f : X → X be a continuous map on a compact metric space. Set

QR(t ) = {x ∈ X : ∃µ ∈V f (x) wi th hµ( f ) ≤ t }.

Then h( f ,QR(t )) ≤ t .

Corollary 1.10. Let f : X → X be a continuous map of a compact metric space. Then

h( f ) = supµ∈M( f ) hµ( f ).

Theorem 1.11. Let f be continuous map on a compact metric space and µ ∈ M( f ) be

ergodic. Let G(µ) be the set of generic points of µ, i.e.

G(µ) = {x : V f (x) = {µ}}.

Then h( f ,G(µ)) = hµ( f ).

Proposition 1.12. If f and g are entropy conjugate homeomorphisms of compact metric

spaces, then h( f ) = h(g ).

Proposition 1.13. Suppose f and g are entropy- conjugate homeomorphisms of com-

pact metric spaces. Then f is intrinsically ergodic iff g is.
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2 Recent Works

• In 2001 Oliver Jenkinson introduced the entropy for rotation vectors and relate this

to the directional entropy of Geller and Misiurewicz.

Definition 2.1. [6] Given a continuous function g : X → R we define its pressure P (g )

with respect to T to be

P (g ) = supµ∈M (h(µ)+
∫

g dµ),

where h(µ) denotes the entropy of µ. If m ∈ M satisfies P (g ) = h(m)+ ∫
g dm then it is

called an equilibrium state for g .

Definition 2.2. [6] Given v ∈ Rd we let v. f denote the function v1 f1 + ...+ vd fd . Define

p : Rd → R by p(v) = p(v. f ). Of course p depends on both T and f , though for ease of

notion we supress this dependence.

Let M f (v) = ESv. f denote the set of equilibrium states of v. f , so that M f is a map

from Rd to the power set of M . We will be interested in the d-parameter family M f (Rd ).

We call this the family of f -equilibrium states.

Definition 2.3. [6] Let

p ′(v ;h) = l i mt↓0
p(v + th)−p(v)

t

denote the directional derivative of p at the point v in the direction h ∈ Rd . A vector

u ∈Rd is a subgradient of p at the point v ∈Rd if

p(v +h) ≥ p(v)+u.h f or al l h ∈Rd .

The set of all subgradients of p at v is called the subdifferential of p at v, and is denoted

by δp(Rd ) denote ∪v∈Rdδp(v).

Proposition 2.4. [6] Let (X ,T ) be a dynamical system for which the entropy map is up-

per semi-continuous, and suppose f : X → Rd is continuous. Then δp(v) = f∗(M f (v))

for all v ∈Rd .

Corollary 2.5. [6] Let (X ,T ) be a dynamical system for which the entropy map is upper

semi-continuous, and suppose f : X → Rd is continuous. Then p is differentiable at the

point v ∈Rd if and only if f∗(M f (v)) is a singleton.
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Proposition 2.6. [6] Let (X ,T ) be a dynamical system for which the entropy map is up-

per semi continuous, and suppose f : X →Rd is continuous. Then f∗(M ) ⊂ δp(Rd ).

Theorem 2.7. [6] Let (X ,T ) be a dynamical system for which the entropy map is upper

semi-continuous, and suppose f : X →Rd is continuous. Then

f∗(M ) = f∗(M f (Rd )) = δp(Rd ).

Corollary 2.8. [6] Let (X ,T ) be a dynamical system for which the entropy map is upper

semi-continuous, and suppose f : X →Rd is continuous. Then r i ( f∗(M )) ⊂ f∗(M f (Rd )) =
δp(Rd ).

Corollary 2.9. [6] Let (X ,T ) be a dynamical system for which the entropy map is upper

semi-continuous, and suppose f : X → Rd is continuous. If p is strictly convex then

i nt ( f∗(M )) = f∗(M f (Rd )).

Lemma 2.10. [6] If (X ,T ) is a mixing subshift of finite type, and f : X → Rd is a coho-

mologically full function with summable variation. then

(a) Each M f (v) contains a single measure, mv. f say.

(b) Each mv. f is fully supported.

(c) T has a Bernoulli natural extension with respect to mv. f , and in particular the

entropy h(mv. f ) is positive.

(d) If v, v ′ ∈Rd with v 6= v ′ then the equilibrium states mv. f ,mv ′. f are distinct.

(e) The function p defined by p(v) = P (v. f ) is strictly convex.

(f) If f is a Holder continuous function then p is a real-analytic function of v.

Corollary 2.11. [6] Let (X ,T ) be a mixing subshift of finite type. Suppose f : X → Rd is

cohomologically full function with summable variation. Then f∗(M ) ⊂Rd has interior,

and i nt ( f∗(M )) = f∗(M f (Rd )).

Definition 2.12. [6] Given a dynamical system (X ,T ) and g : X →R a continuous func-

tion, we say a measure m ∈ M is g -optimal if
∫

g dm = supµ∈M

∫
g dµ. We call Q(g ) =

supµ∈M

∫
g dµ the optimal ergodic average for g .
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Lemma 2.13. [6] Let (X ,T ) be a subshift of finite type. Let g : X → R be summable

variation. A measure m ∈M is g -optimal if and only if there exits φ ∈C (X ) such that

φ(Tz)+Q(g ) =φ(z)+ g (z) f or al l z ∈ supp(m).

Furthermore, if X is one-sided and g ∈ Fθ(X ) then any such that φ also belongs to

Fθ(X ). If X is two-sided and g ∈Fθ(X ) then any such φ belongs to Fp
θ(X ).

Corollary 2.14. [6] Let (X ,T ) be a subshift of finite type, and g : X → R be of summable

variation. Suppose µ ∈M is g -optimal, and m ∈M satisfies supp(m) ⊂ supp(µ). Then

m is also g -optimal.

Corollary 2.15. [6] Let (X ,T ) be a subshift of finite type, and g : X → R be of summable

variation. If there is a unique g -optimal measure µ ∈ M , then the restriction of T to

supp(µ) is uniquely ergodic.

Definition 2.16. [6] Given a dynamical system (X ,T ) we define the entropy function H

on f∗(M by

H(e) = sup{h(µ) : f∗(µ) = e}.

Theorem 2.17. [6] Let (X ,T ) be a dynamical system for which the entopy map is upper

semi-continuous, and suppose f : X →Rd is continuous. Let e ∈ r i ( f∗(M )).

(a) There exists v ∈Rd for which f −1(e)∩M f (Rd ) ⊂M f (v).

(b) A measure m ∈ f −1(e) satisfies h(m) = H(e) if and only if m ∈ f −1(e)∩M f (Rd ).

Theorem 2.18. [6] Let (X ,T ) be a mixing subshift of finite type, and suppose f : X →Rd

is cohomologically full and has summable variation. Let e ∈ i nt ( f∗(M )). Then

(a) f −1(e) intersects M f (Rd ) at a single measure m.

(b) m is the unique measure in f −1∗ (e) satisfying h(m) = H(e).

Definition 2.19. [6] An ergodic measure µ ∈M is called directional if f∗(m) = f∗(µ) for

all m ∈ M satisfying supp(m) ⊂ supp(µ). An ergodic measure µ ∈ M is called lost if it

is not directional.
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Proposition 2.20. [6] Let (X ,T ) be a dynamical system with upper semi-continuous en-

tropy map, and suppose f : X →Rd is continuous. Suppose µ ∈M . Then µ is directional

if either of the two following condition hold

(a) for all i , the restricted coordinate function fi |supp(µ) is an essential coboundary for

the dynamical system (supp(µ),T |supp(µ)),

(b) the restriction of T to supp(µ) is uniquely ergodic.

Proposition 2.21. [6] Let (X ,T ) be a mixing subshift of finite type, and f : X → Rd be

of summable variation, with at least one of its coordinate functions not an essential

coboundary. Then

(a) Any fully supported ergodic measure µ ∈M is lost,

(b) Any f -equilibrium state mv. f ∈M f (Rd ) is lost.

Proposition 2.22. [6] Let (X ,T ) be a subshift of finite type, f : X → Rd be of summable

variation, and e an exposed point of the rotation set f∗(M ). Then every ergodic mea-

sure in the rotation class f −1∗ (e) is directional, and f −1∗ (e) contains at least one ergodic

measure.

Definition 2.23. For e ∈ f∗(M ) the directional entropy H (e) at the point e is given by

H (e) = sup{h(µ) : µ ∈ f −1
∗ (e) i s di r ect i onal },

Where we define the supremum of the empty set to be 0.

Theorem 2.24. [6] Let (X ,T ) be a subshift of finite type, and suppose f : X → Rd has

summable variation. If e is an exposed point of rotation set then there exists at least one

directional measure m ∈ f −1∗ (e) with h(m) = H(e). Consequently the directional entropy

H (e) is equal to entropy H(e) at all exposed points e of f∗(M ).

Lemma 2.25. [6] Let X be a mixing subshift of finite type, with alphabet {1, ...,k}. Let

f : X → Rd be continuous. For ε > 0, a ∈ {1, ...,k}, and for arbitrary large M ∈ N, there

exists a finite collection C of length M periodic blocks, each begining with symbol a,

whose rotation vectors are ε-dense in f∗(M ).
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Lemma 2.26. [6] Let X be a mixing subshift of finite type, with alphabet 1, ...,k. Let

f : X → Rd be continuous. For any a ∈ {1, ...,k},e ∈ f∗(M ),r > 0,n ∈ N, let M(e,r,n) be

the number of length n-periodic blocks begining with symbol a whose rotation vectors

lie in Br (e). Then

H(e) = l i mr→0l i msupn→∞
1

n
l og M(e,r,n).

Theorem 2.27. [6] Let X be a mixing subshift of finite type. Let f : X →Rd be of summable

variation, and cohomologically full. For e ∈ i nt ( f∗(M )) we have that H (e) = H(e).

That is, the directional entropy H coincides with the entropy function H on the interior

of the rotation set.

Proposition 2.28. [6] Let (X ,T ) be a mixing subshift of finite type, and f : X →Rd be of

summable variation and cohomologically full. If e is in the interior of the rotation set

f∗(M ) then there exists unique measure m ∈ f −1(e) with h(m) = H(e) =H (e), and this

measure is lost.

Theorem 2.29. [6] Let (X ,T ) be a mixing subshift of finite type, and suppose f : X →Rd

is cohomologically full and has summable variation. Then H (e) = H(e) at all interior

and exposed point e of he rotation set f∗(M ). For e in the interior of f∗(M ),H (e) = H(e)

is attained by a unique measure in the rotation class f −1∗ (e), and this measure is lost. If

e is an exposed point of f∗(M ) then H (e) = H(e) is attained by at least one directional

measure in f −1∗ (e), and is not attained by any lost measure in f −1∗ (e).

Corollary 2.30. [6] Let (X ,T ) be a mixing subshift of finite type, and suppose f : X →Rd

is cohomologically full with summable variation. If the rotation set f∗(M ) is strictly

convex, then the functions H and H coincide.

Lemma 2.31. [6] Suppose (X ,T ) is a transitive subshift of finite type, and that f : X →Rd

is constant on cylinders of length two. Let µ1, ...,µr be the invariant measure supported

on the elementary periodic orbits of X . Then the rotation set f∗(M ) is a polyhedron

whose extermal points are a subset of f∗(µ1), ..., f∗(µr ).

Corollary 2.32. [6] Suppose (X ,T ) is a transitive subshift of finite type, and that f : X →
Rd is locally constant function. Then the rotation set f∗(M ) is a polyhydron.

Theorem 2.33. [6] Suppose (X ,T ) is a transitive subshift of finite type, and that f : X →
Rd is constant on cylinders of length two. Let F be a face of corresponding polyhedral
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rotation set f∗(M ), and L1, ...,Ls those elementary loops of X whose rotation vectors

e1, ...,es lie in F . If XF ⊂ X denotes the non-wandering subshift of finite type generated

by loops L1, ...,Ls , then for any measure µ ∈M ,

f∗(µ) ∈ F if and only if supp(µ) ⊂ XF .

• In 2012 De-Jun Feng and Wen Huang defined the measure-theoretical lower and

upper entropies hµ(T ),hµ(T ) for any µ ∈ M(X ), where M(X ) denotes the collection of

all Borel probability measures on X . For any non-empty compact subset K of X , they

showed that

hB
top (T,K ) = sup{hµ(T ) : µ ∈ M(X ), µ(K ) = 1},

hP
top (T,K ) = sup{hµ(T ) : µ ∈ M(X ), µ(K ) = 1},

Where hB
top (T,K ) denotes the Bowen topological entropy of K , and hP

top (T,K ) the pack-

ing topological entropy of K .

Definition 2.34. [18] Let µ ∈ M(X ). The measure theoretical lower and upper entropies

of µ are defined respectively by

hµ(T ) =
∫

hµ(T, x)dµ(x), hµ(T ) =
∫

hµ(T, x)dµ(x),

where

hµ(T, x) = l i mε→0l i mi n fn→+∞− 1

n
logµ(Bn(x,ε)),

hµ(T, x) = l i mε→0l i msupn→+∞− 1

n
logµ(Bn(x,ε)).

Theorem 2.35. [18] Let (X ,T ) be a TDS.

(a) If K ⊆ X is non-empty and compact, then

hB
top (T,K ) = sup{hµ(T ) : µ ∈ M(X ),µ(K ) = 1}.

(b) Assume that htop (T ) <∞. If Z ⊆ X is analytic, then

hB
top (T, Z ) = sup{hB

top (T,K ) : K ⊆ Z i s compact .}.

Theorem 2.36. [18] Let (X ,T ) be a TDS.
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(a) If K ⊆ X is non-empty and compact, then

hP
top (T,K ) = sup{hµ(T ) : µ ∈ M(X ),µ(K ) = 1},

where hP
top (T,K ) denotes the packing topological entropy of K .

(b) If Z ⊆ X is analytic, then

hP
top (T, Z ) = {hP

top (T,K ) : K ⊆ Z i s compact }.

Proposition 2.37. [18]

(a) For Z ⊆ Z ′,

hUC
top (T, Z ) ≤ hUC

top (T, Z ′), hB
top (T, Z ) ≤ hB

top (T, z ′), hP
top (T, Z ) ≤ hP

top (T, Z ′).

(b) For Z ⊆∪∞
i=1Zi , s ≥ 0 and ε> 0, we have

M s
ε (Z ) ≤Σ∞

i=1M
s
ε (Zi ),

c ≤ supi≥1hB
top (T, Zi ), hP

top (T, Z ) ≤ supi≥1hP
top (T, Zi ).

(c) For any Z ⊆ X ,hB
top (T, Z ) ≤ hP

top (T, Z ) ≤ hUC
top (T, Z ).

(d) Furthermore, if Z is T -invariant and compact, then

hB
top (T, Z ) = hP

top (T, Z ) = hUC
top (T, Z ).

Proposition 2.38. [18]

(a) For any s ≥ 0, N ∈N and ε> 0 both M s
N ,ε and W s

N ,ε are outer measures on X .

(b) For any s ≥ 0, both M s and W s are metric outer measures on X .

Proposition 2.39. [18] Let Z ⊆ X . Then For any s ≥ 0 and ε,δ> 0, we have

M s+δ
N ,6ε(Z ) ≤W s

N ,ε(Z ) ≤M s
N ,ε(Z )
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when N is large enough. As a result, M s+δ(Z ) ≤ W s(Z ) ≤ M s(Z ) and hB
top (T, Z ) =

hW B
top (T, Z ).

Lemma 2.40. [18] Let (X ,d) be a compact metric space and B = {B(xi ,ri )}i∈T be a fam-

ily of closed balls in X . Then there exists a finite or countable subfamily B′{B(xi ,ri )}i∈i ∈T ′

of pairwise disjoint balls in B such that

∪B∈BB ⊆∪i∈T B(xi ,5ri ).

Lemma 2.41. [18] Let K be a non-empty compact subset of X . Let s ≥ 0, N ∈N and ε> 0.

Suppose that c :=WN ,εs(K ) > 0. Then there is a Borel measure µ on X such that µ(K ) = 1

and

µ(Bn(x,ε)) ≤ 1

c
e−ns , ∀x ∈ X , n ≥ N .

Theorem 2.42. [18] Let (X ,T ) be a TDS. Assume that X is zero-dimensional, i.e., for any

δ> 0, X has a closed-open partition with diameter less than δ. Then for any analytic set

Z ⊂ X ,

hB
top (T, Z ) = sup{hB

top (T,K ) : K ⊂ Z , K i s compact }.

Proposition 2.43. [18] Assume U is closed-open partition of X . Let N ∈N. Then

(a) If Ei ↑ E, i.e., Ei+1 ⊇ Ei and ∪i Ei = E, then

M s
N (U ,E) = l i mi→∞M s

N (U ,Ei ).

(b) Assume Z ⊂ X is analytic. Then

M s
N (U , Z ) = sup{M s

N (U ,K ) : K ⊂ Z , K i s compact }.

Lemma 2.44. [18] Let (X ,T ) be a TDS with metric d and a surjective map T , (X̃ , T̃ ) be

the natural extension of (X ,T ) and π1 : X̃ → X be the projection of the first coordinate.

Then supx∈X hUC
top (T̃ ,π−1

1 (x)) = 0.

Definition 2.45. An extension π : (Z ,R) → (X ,T ) between two TDS is a principal exten-

sion if hv (R) = hv◦π−1 (T ) for every v ∈ M(Z ,R).

66



Proposition 2.46. [18] Every invertible TDS (X ,T ) with htop (T ) <∞has a zero-dimensional

principal extension (Z ,R) with R being invertible.

Theorem 2.47. Let π : (Y ,S) → (X ,T ) be a factor map between two TDSs. Then for any

E ⊆ Y one has

hB
top (T,π(E)) ≤ hB

top (S,E) ≤ hB
top (T,π(E))+ supx∈X hUC

top (S,π−1(x)).

Proposition 2.48. [18] Let π : (Y ,S) → (X ,T ) be a factor map between two TDSs with

htop (S) <∞. Then we have

supx∈X hUC
top (S,π−1(x)) = supµ∈M(Y ,S)(hµ(S)−hµ◦π−1 (T ).

Lemma 2.49. [18] Let (X ,T ) be a TDS with htop (S) <∞.Then there exists a factor map

π : (H ,Γ) → (X ,T ) such that (H ,Γ) is zero-dimesional and

supx∈X hUC
top (Γ,π−1(x)) = 0.

Lemma 2.50. Let Z ⊂ X and s,ε> 0. Assume P s
ε (Z ) =∞. Then for any given finite inter-

val (a,b) ⊂R with a ≥ 0 and any N ∈N, there exists a finite disjoint colection {B ni (xi ,ε)}

such that xi ∈ Z , ni ≥ N and Σi e−ni s ∈ (a,b).

• In August, 2020 Xiankun Ren, Xueting Tian and Yunuha Zhou proved a variational

principle for topological entropy of saturated sets for systems which have specification

and uniform separation properties. They worked on group action topological system,

where the group is a countable infinite discrete amenable group with a compact metric

space.

Theorem 2.51. [8] If the specification and uniform separation property hold, then for

any non-empty connected closed subset K ⊂ M(X ,G)

hB
top (GK , {Fn}) = i n f {hµ(X ,G)|µ ∈ K }.

Theorem 2.52. v Suppose the system (X ,G) has the specification and uniform seperation

properties. If X̂ (φ, {Fn}) is non-empty then

hB
top (X (φ,α.{Fn})) = htop (X ,G).
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Theorem 2.53. [8] For α ∈R,

hB
top (X (φ,α.{Fn})) = sup{hµ(X ,G),

∫
X
φdµ=α}.

Definition 2.54. [8] Let Ω,K ⊂ F (G) be two subsets of a group G. The K − i nter i or of Ω

is the subset IntK (Ω) defined by

IntK (Ω) := {g ∈G|K g ⊂Ω}.

The K − closur e of Ω is the subset C lK (Ω) ⊂G defined by

C lK (Ω) := {g ∈G|K g ∩Ω 6=φ}.

The K −bound ar y of Ω is the subset ∂K (Ω) ⊂G defined by

∂K (Ω) :=C lK (Ω) IntK (Ω).

The relative amenability constant of Ω with respect to K is the number α(Ω,K ) defined

by

α(Ω,K ) := |∂K (Ω)

|Ω| .

Ω is called (K ,δ)− i nvar i ant if α(Ω,K ) < δ.

Lemma 2.55. [8] Let G be a countable amenable group. Let {Fn} be a Folner sequence.

For any finite subset K ⊂G,

l i mn→∞α(Fn ,K ) = 0

Proposition 2.56. [8] Let G be a group and 0 < ε ≤ 1
2 . Then there exists an integer s0 =

s0(ε) ≥ 1 such that for each s ≤ s0 the following holds, If K1,K2, ...,Ks are non-empty finite

subset of G such that

α(D,K j ) ≤ ε2ε f or al l 1 ≤ j < k ≤ s,

and D is a non-empty finite subset of G such that

α(D,K j ) ≤ ε2ε f or al l 1 ≤ j ≤ s,

then D can be ε−quasi tiled by K1, ...Ks .
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Definition 2.57. [8] T is called a tiling of G if there exists a shape set S = {Si ∈ F (G)|1 ≤
i ≤ k} and tiling centers C1,C2, ...,Ck such that {S j g |g ∈C j , j = 1,2, ...,k} ia a partition of

G. Let {Tk }k≥1 be a sequence of tilings of G, we say {Tk }k≥1 is congruent if for each k ≥ 1,

each element in {Tk+1} is a union of elements in {Tk }.

Lemma 2.58. [8] Fix a converging to zero sequence εk > 0 and a sequence Kk of finite

subsets of G. There exists a congruent sequence of tilings Tk of G such that shapes of T̃k

are (Kk ,εk )− i nvar i ant .

Lemma 2.59. [8] Let (X ,G) be a dynamical system. Let µ ∈ M(X ,G), δ∗ > 0,ε∗ > 0,ξ >
0. Then there exists 0 < δ < mi n{ 1

2 , ξ3 , δ
∗

2 } such that if F ∈ F (G) and Γ ⊂ XF,B(µ,ξ) is a

(δ∗,F,ε)-seperated set, then for any F ′ ⊂ F with |F ′|
|F | > 1−δ, Γ is a (δ∗,F,ε)-seperated set,

then for any F ′ ⊂ F with |F ′|
|F | > 1−δ,Γ is a (δ

∗
2 ,F ′,ε∗) set and Γ⊂ XF ′,B(µ,2ε).

Definition 2.60. [8] The measure v ∈ M(X ,G) is entropy-approachable by ergodic mea-

sure if for any neighbourhood C of v and each h∗ < hv (X ,G), there exists a measure

u ∈ E(X ,G)∩C such that hµ(X ,G) > h∗. The ergodic measures are entropy dense if each

v ∈ M(X ,G) is entropy-approachable by ergodic measures.

Theorem 2.61. [8] Suppose the dynamical system has specification property. Then the

ergodic measures are entropy dense.

Lemma 2.62. [8] If (n
k ) denotes the number of combinations of n objects taken k at a

time and δ< 1/2 then

Σk≤δn

(
n

k

)
≤ enφ(δ),

where φ(δ) =−δlogδ− (1−δ)(log (1−δ)).

Theorem 2.63. [8] Suppose the action (X ,G) is expensive. Then the action has the uni-

form separation property.

Theorem 2.64. [8] Let Γ be a countable discrete group and f an element of ZΓ invertible

in l 1(Γ,R). Then the action of Γ on X f which is the Pontryagin dual of ZΓ/ZΓ f has the

specification and uniform separation properties.

Corollary 2.65. [8] Assume that (X ,ρ,G) has the uniform seperation property and that

the ergodic measures are entropy dense. Let {Kn} be a tempered Folner sequence. For
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any η > 0, there exists δ∗ > 0 and ε∗ > 0 so that for µ ∈ M(X ,G) and any neighborhood

C ⊂ M(X ) of µ, there exists n∗
C ,µ,η such that

N (C ;δ∗,Kn,ε∗) ≥ e |Kn |(hµ(X ,G)−η)

For any µ ∈ M(X ,G),

hµ(X ,G) ≤ l i mε→0l i mδ→0i n fC3µ
1

|Kn |
log N (C ;δ,Kn ,ε).

Proposition 2.66. [8] Let (X ,G) be a topological dynamical system and µ ∈ M(X ,G).

Then for any Folner sequence {Fn},

s(µ, {Fn}) ≤ hµ(X ,G).

Proposition 2.67. [8] Let {Kn} be a tempered Folner sequence and µ ∈ E(X ,G). Then

for h∗ < hµ(X ,G), there exist δ∗ > 0,ε∗ > 0 such that for any neighborhood C of µ, there

exists n∗
C , s.t for any n ≥ n∗

C there exists a (δ∗,Fn ,ε∗)-separated set Γn of XFn ,C satisfying

|Γn | ≥ eh|Kn |.

Corollary 2.68. [8] Let (X ,G) be a topological dynamical system, {Kn} be a tempered

Folner seqence. For µ ∈ E(X ,G),

hµ(X ,G) = hµ(X , {Fn}) = l i mε→0l i mδ→0s(v ;δ,ε, {Kn})

= l i mε→0l i mδ→0s(v ;δ,ε, {Kn}).

Proposition 2.69. [8] Let (X ,G) be a topological dynamical system. If the uniform sepa-

ration property condition is true and the ergodic measures are entropy dense, then for a

tempered Folner sequence {Kn}, s(µ, {Kn}) is well-defined, and s(µ, {Kn}) = hµ(X , {Kn}) =
hµ(X ,G), for all µ ∈ M(X ,G).

Proposition 2.70. [8] Let (X ,G) be a topological dynamical system. Let {Kn} be a tem-

pered Folner sequence. If the uniform seperation property condition is true and the er-
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godic measures are entropy dense, then the entropy map

µ→ s(µ; {Fn})

is upper semi-continuous.
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1 Introduction

Rothe’s method was introduced by E. Rothe [1] in 1930 for the purpose of solving the

following scalar parabolic initial boundary value problem of second order,

R(t , x)
∂u

∂t
− ∂2u

∂x2
= S(t , x,u), 0 < x < 1, t > 0,

u(0, x) = u0(x),

u(t ,0) = u(t ,1) = 0, t ≥ 0,

where R and S are sufficiently smooth functions in the variables t and x in [0,T ]×(0,1).

Here T means an arbitrary finite positive number. Rothe’s method consists in dividing

the interval [0,T ] into n number of subintervals of the form [t n
j−1, t n

j ], t n
j = j h, j =

1,2, . . . ,n with t n
0 = 0, of equal lengths h(= T

n ) and replacing the partial derivative ∂u
∂t of

the unknown function u by the difference quotients
un

j −un
j−1

h . After defining a sequence

of polygonal functions as,

U n(x, t ) = un
j−1(x)+ 1

h
(t − t n

j−1)(un
j (x)−un

j−1(x)), t ∈ [t n
j−1, t n

j ],

Rothe proved that the sequence {U n} converges to the unique solution of the prob-

lem as n → ∞ using some apriori estimates on the sequence {U n}. The method in-

troduced by Rothe becomes a very effective theoretical tool for proving the existence

and uniqueness of solutions of linear, nonlinear, parabolic and hyperbolic problems

of higher orders. This method is presently known as Rothe’s method. It is also known

as the method of semidiscretization or the method of lines. This method can be used in

diffusion problems also as e.g. [2, 3, 5, 6, 12]. Thus Rothe’s method has many applica-

tions not only in mathematics but also in physical and biological problems designed

by partial differential equations.

As an application of Rothe’s method to a semilinear differential equation readers

can see the section 5.

For the use of Rothe’s method to show the existence and uniqueness of a strong

solution of a quasilinear equation readers can follow [17], in which the author consider

the problem

X and Y be two real reflexive Banach spaces such that Y is densely and continuously
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embedded in X . Consider the following integrodifferential equation in X

du(t )

d t
+ A(u(t ))u(t ) = K (u)(t )+ f (t ), 0 < t < T,u(0) = u0,

where A(u) is a linear operator in X for each u in an open subset W of Y , K is the

nonlinear Volterra operator

K (u)(t ) =
∫ t

0
a(t − s)k(s,u(s))d s,

where a is a real-valued function defined on J := [0,T ] and k is the Y -valued map de-

fined on J ×W , f : J → Y .

For a nonlinear problem readers can see [11].

In [11] using the method of semidiscretization author has established the existence

and uniqueness of a strong solution for the following nonlinear nonlocal functional

differential equation in a Banach X

u′(t )+ Au(t ) = f (t ,u(t ),ut ), t ∈ (0,T ],

h(u0) =φ on[−τ,0],

where 0 < T <∞, φ ∈C0 :=C ([−τ,0]; X ), τ> 0, the nonlinear operator A is singlevalued

and m-accretive defined from the domain D(A) ⊂ X into X , the nonlinear map f is

defined from [0,T ]×X ×C0 :=C ([−τ,0]; X ) into X , the map h is defined from C0 into C0.

For u ∈ Cτ := C ([−τ,T ] : X ), function ut ∈ C0 is given by ut (s) = u(t + s) for s ∈ [−τ,0].

Here Ct := C ([−τ, t ]; X ) for t ∈ [0,T ] is the Banach space of all continuous functions

from [−τ, t ] into X endowed with the supremum norm

‖φ‖t = sup−τ≤η≤t , φ ∈Ct .

Later on many authors have applied and developed the Rothe’s Method to various

types of differential equations, we refer the readers to [8, 10, 11, 13, 14].

As our main aim is to present the Method of Rothe as an effective tool for solv-

ing fractional integral and differential equation, so before going to discuss the work of

Raheen - Bahuguna ([2], [4]) we state some definitions and results related to the men-

tioned work.
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2 Fractional Calculus

The first appearance of fractional calculus was in a letter exchange between Leibniz

and a French Mathematician Marquis de L’Hospital in 1695. For nth order derivative

where n ∈N Leibniz introduced the notation d n y
d xn = Dn y and repotted this to L’Hospital.

In his letter L’Hospital asked the question to Leibniz, “What if n = 1
2 ?" (i.e. if n is frac-

tional). Leibniz replied, “......d
1
2 x will be equal to x

p
d x : x. This is an apparent paradox

from which, one day, useful consequences will be drawn. Since there are little para-

doxes without usefulnes.....". That was the first step of fractional calculus. After that it

drew attention of many mathematicians such as Abel, Laplace, Euler, Riemann, Fourier

and so on.

The fractional calculus has received a significant attention in the recent years due

to its physical background in the field of engineering, physics, mathematics, chem-

istry, economics etc. It is a powerful tool which plays an major role in the study of

nonlinear oscillations of earthquakes and the modeling of multiscale problems. Dif-

ferential equations with fractional order derivative or fractional integration are found

to be more suitable in comparison to the integer order derivative or integration in pro-

viding a mathematical aspect of physical phenomena.

From a numerical perspective, different understandings of fractional differentia-

tion have been proposed, however there is as yet a profound discussion. The fractional

differentiation and integration of nonlocal operators are not yet all around character-

ized and that different definitions are still exist together. From the main reference work

recorded in 1695 to the current day, numerous articles have been published on this

topic, yet there is still a ton to do.

The commonly used definitions of fractional differentiation and integration are

given by Riemann, Liouville and Caputo. We define Riemann-Liouville fractional deriva-

tives and integrals and Caputo fractional derivatives in the following.

Definition 2.1. (Riemann-Liouville fractional integration) Let f ∈ L1[a,b],α > 0 the

Riemann-Liouville fractional integral operator of order α is defined as

Iαa f (t )[orD−α
a f (t )] = 1

Γ(α)

∫ t

a
(t − s)α−1 f (s)d s ∀t ∈ [a,b].

Definition 2.2. (The Riemann-Liouville fractional derivative) The Riemann-Liouville
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fractional derivative of f (t ) of order α on a finite interval [a,b] is defined as

Dα
a f (t ) = 1

Γ(n −α)

d n

d t n

∫ t

a
(t − s)n−α−1 f (s)d s, n −1 ≤α< n.

Definition 2.3. (Caputo fractional derivatives) Let n − 1 ≤ α < n,n ∈ Z+, the Caputo

fractional derivative of a function f (t ) of order α is defined by

c Dα
a f (t ) = 1

Γ(n −α)

∫ t

a
(t − s)n−α−1 f n(s)d s.

Remark 2.4. The Euler’s gamma function is defined as,

Γ(α) =
∫ ∞

0
tα−1e−t d t .

In [15] authors Lin-Xu used method based on time discretization to the following

time fractional diffusion problem

∂αu(x, t )

∂tα
− ∂2u(x, t )

∂x2
= f (x, t ), x ∈∧,0 < t ≤ T.

Subject to the following initial and boundary conditions

u(x,0) = g (x), x ∈∧,

u(0, t ) = u(L, t ) = 0, 0 ≤ t ≤ T,

where 0 <α< 1 is the order of the time fractional derivative. The term ∂αu(x,t )
∂tα is defined

as Caputo fractional derivative of order α, given by

∂αu(x, t )

∂tα
= 1

Γ(1−α)

∫ t

0

∂u(x, s)

∂s

d s

(t − s)α
.

In [16], authors Sweilam-Khader-Mahdy used the Crank–Nicolson finite difference

method to solve the following linear time-fractional diffusion equation with Dirichlet
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boundary conditions

∂αu(x, t )

∂tα
= ∂2u(x, t )

∂x2
,

u(x,0) = f (x),

u(0, t ) = u(1, t ) = 0,

where 0 < x < 1,0 ≤ t ≤ T and the parameter 0 < α < 1 refers to the fractional order of

the time derivative.

Recently, the existence and uniqueness of a strong solution for the following multi-

term time fractional integral diffusion equation have been established by Migórski -

Zeng [5] in a Hilbert space H applying Rothe’s Method,

∂u(t )

∂t
+ Au(t ) =

k∑
i=1

ai (0Iαi
t u(t ))+ f (t ), t ∈ (0,T ],

u(0) = u0.

where the constants ai ,αi , i = 1, .....,k are such that ai ≥ 0,αi > 0,−A : D(A) ⊂ H → H

is an infinitesimal generator of a C0-semigroup of contractions in H , the function f :

[0,T ] → H is Lipschitz continuous, 0Iαi
t u denotes the fractional integral of order αi > 0

of u, and u0 ∈ D(A).

Readers can check [18] for the time discretization in fractional differential equa-

tions.

Besides this many author have done different work using fractional differential equa-

tion such as [2, 4, 6].

3 Semigroup Theory

3.1 Semigroup of bounded linear operators

Definition 3.1. A one parameter family T (t ), 0 ≤ t < ∞, of bounded linear operators

from a Banach space X into X is a semi g r oup o f bounded li near oper ator s on X

if

(i) T (0) = I , (I is the identity operator on X ),
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(ii) T (t + s) = T (t )T (s) for every t , s ≥ 0 (the semigroup property).

Definition 3.2. A semigroup T (t ),0 ≤ t < ∞, of bounded linear operators on X is a

strongly continuous semigroup of bounded linear operators if

lim
t↓0

T (t )x = x for every x ∈ X .

A strongly continuous semigroup of bounded linear operators on X is also known as

semigroup of class C0 or simply C0 semigroup.

Definition 3.3. Let T (t ),0 ≤ t < ∞ be a semigroup of bounded linear operators on X .

The infinitesimal generator A : D(A) ⊂ X → X of T (t ) is defined by

Ax = lim
t↓0

T (t )x −x

t
, x ∈ D(A),

where D(A) is the domain of A and it is defined as

D(A) =
{

x ∈ X : lim
t↓0

T (t )x −x

t
exi st s

}
.

Example 3.4. Consider X = C [0,1] with ‖ · ‖∞ norm. The family of operator {T (t )}t≥0

define,

T : X → X as

T (t ) f (ξ) = f
(

ξ
1+tξ

)
, ξ ∈ [0,1].

Then T (t ) is a C0-semigroup on X .

Let A be the infinitesimal generator of T (t ). Then

A( f (ξ)) = lim
t↓0

T (t ) f (ξ)− f (ξ)

t

= lim
t↓0

f
(

ξ
1+tξ

)
− f (ξ)

t

=−ξ2 d

d t
f (ξ).
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Definition 3.5. Consider T (t ) be a C0-semigroup on X . If

‖T (t )‖ ≤ 1, ∀t ≥ 0,

Then T (t ) is called a C0-semigroup of contraction.

3.2 m-Accretive operator

Definition 3.6. [2] Let X be a Banach space and let X ∗ be its dual. For every x ∈ X define

the duality map J as

J (x) = {x∗ ∈ X ∗ : (x∗, x) = ‖x‖2 = ‖x∗‖2},

where (x∗, x) denotes the value of x∗ at x.

Definition 3.7. [2] A nonlinear operator A : D(A) ⊂ X → X is called m-accretive if

(Ax − Ay, J (x − y)) ≥ 0, ∀x, y ∈ D(A), and R(I + A) = X ,

where R(.) is the range of an operator.

Lemma 3.8. [7] If −A is the infinitesimal generator of a C0 semigroup of contractions

then A is m-accretive i.e.

(Au − Av, J (u − v)) ≥ 0, ∀u, v ∈ D(A),

where J is the duality map and R(I +λA) = X , for λ> 0, where I is the identity operator

on X and R(.) denotes range of an operator.

Lemma 3.9. [9] Let −A be the infinitesimal generator of a C0 semigroup of contractions.

If X n ∈ D(A), n = 1,2,3, . . . , X n → u ∈ H and if ‖AX n‖ are bounded, then u ∈ D(A) and

AX n → Au.
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4 Method of Rothe for solving Fractional Integral Diffu-

sion Equation

In this section we discuss the work of [2].

In [2] author apply the Rothe’s method to the following fractional integral diffusion

equation in a Banach space X.

∂u(t )

∂t
+ Au(t ) = 1

Γ(α)

∫ t

0

u(s)

(t − s)1−α d s + f (t ), t ∈ (0,T ].

u(0) = u0.

(1)

where 0 < α < 1, −A is the infinitesimal generator of a C0-semigroup of contrac-

tions, f is a given map from [0,T ] into X , u0 ∈ D(A) ⊂ A, the domain of A.

4.1 Assumptions

(A1) There exists a constant k > 0 s.t.

‖ f (t )− f (s)‖ ≤ k|t − s|, ∀t , s ∈ [0,T ].

(A2) Suppose that T and α satisfy the following relation

T 1+α)

Γ(1+α
< 1.

where Γ is the Gamma function.

4.2 Statement of the result

Definition 4.1. A strong solution u of (1) on [0,T ] is a function u ∈C ([0,T ], X ) such that

u(t ) ∈ D(A) for a.e. t ∈ [0,T ], u is differentiable a.e. on [0,T ] and

∂u(t )

∂t
+ Au(t ) = 1

Γ(α)

∫ t

0

u(s)

(t − s)1−α d s + f (t ), a.e. t ∈ (0,T ].

u(0) = u0.
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Theorem 4.2. Let the assumptions (A1) and (A2) are satisfied. Then for every u0 ∈ D(A),

the initial value problem (1) has a unique strong solution on the interval [0,T ].

4.3 Constructions of Rothe’s sequence

To apply the method of semidiscretization, author divided the interval [0,T ] into the

subintervals of length hn = T
n . Then replace the equations (1) by the following approx-

imate equations.

un
1 −un

0

hn
+ Au1 = f0,

un
0 = u0,

and for j = 2,3,4, . . . ,n, ,

un
j −un

j−1

hn
+ Aun

j = 1

Γ(1+α)

j−1∑
i=1

ui [(t n
j − t n

i−1)α− (t n
j − t n

i )α]+ f n
j−1,

where, f n
j = f (t n

j )

Next define the Rothe’s sequence {U n} as,

U n(t )=

u0 i f t = 0,

un
j−1 + 1

hn
(t − t n

j−1)(un
j −un

j−1) i f t ∈ (t n
j−1, t n

j ].

After that, author proved that {U n} converges to the solution of the considered

problem as n → ∞ using some apriori estimates on un
j and

un
j −un

j−1

hn
. In the end, they

have established that the solution is a strong solution and it is unique.

4.4 Example

As an application of the problem (1) author consider the following example
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∂u(t , x)

∂t
− ∂2u(t , x)

∂x2
= 1

Γ(1/2)

∫ t

0

u(s, x)

(t − s)
1
2

d s on [0,1]× [0,π],

u(0, x) = u0(x),

u(t ,0) = u(t ,π) = 0 ∀t ∈ [0,1],

(2)

where u : [0,1]× [0,π] → R is an unknown function and u0 : [0,π] → R is a given initial

value function.

Identify u : [0,1] → L2([0,π]) by u(t )(x) = u(t , x), and define

Au =−∂2u
∂x2 , and

D(A) = {u ∈ L2([0,π])|u′′ ∈ L2([0,π])},

then the problem (2) reduces to,

∂u(t )

∂t
+ Au(t ) = 1

Γ(1/2)

∫ t

0

u(s)

(t − s)
1
2

d s t ∈ [0,T ],

u(0) = u0,

which is same as problem (1).

Here, f (t ) = 0, T = 1 and α= 1.

So,

T 1+α

Γ(1+α)
= 1

Γ( 3
2 )

< 1.

Hence the condition (A1) and (A2) are satisfied.

So by applying the Theorem (4.2) obtain a unique strong solution of the given problem.

4.5 Observation

The condition (A2) which is mentioned in [2], it means that [2] provides only a local

(in time) unique strong solution of (1). For example, by using main results of [2] the
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following fractional integral diffusion equation problem cannot be solved

∂u(t , x)

∂t
− ∂2u(t , x)

∂x2
= 1

Γ(0.5)

∫ t

0

u(s, x)

(t − s)0.5
d s in (0,10)× (0,π),

u(0, x) = u0(x), ∀x ∈ [0,π],

u(t ,0) = u(t ,π) = 0 ∀t ∈ [0,10].

Since 101.5

Γ(1.5) > 1 and the smallness condition (A2) is not satisfied. So we can not apply

the Theorem (4.2).

5 Method of Rothe for solving Fractional Differential Equa-

tion

In this section we discuss the work of [4].

In [4] author apply the Rothe’s method to the following semilinear fractional differ-

ential equation in a Banach space X.

Dαu(t )+ Au(t ) = f (t ,u(t )), t ∈ (0,T ],

u(0) = u0,
(3)

where, Dα(0 < α < 1) denotes the standard Riemann-Liouville fractional derivative of

order α, −A : D(A) ⊂ X → X is the infinitesimal generator of a C0-semigroup S(t ), t ≥ 0

of contractions in X , u0 ∈ D(A), the domain of A, and the map f : I ×D(A) → X is

continuous. Here I = [0,T ].

5.1 Assumptions

(H1) There exists a constant k1 > 0 s.t.

‖ f (t ,u)− f (s, v)‖ ≤ k1[|t − s|+‖u − v‖], ∀t , s ∈ [0,T ], ∀u, v ∈ D(A).
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5.2 Statement of the result

Theorem 5.1. Suppose that (H1) is satisfied and A is m-accretive. Then problem (3) has

a unique strong solution on I .

5.3 Constructions of Rothe’s sequence

To apply the method of time discretization, author divided the time interval [0,T ] into

the subintervals of length hn = T
n and replace the equations (3) by the following ap-

proximate equations.

un
j −αun

j−1

hα
n

+ Aun
j = f (t n

j ,un
j−1), j = 1,2, . . . ,n,

un
0 = u0.

Next define the Rothe’s sequence {U n} as,

U n(t )=


u0 f or t ∈ [−τ,0],

un
j−1 + 1

hα
n

(t − t n
j−1)(un

j −αun
j−1) i n I n

j = (t n
j−1, t n

j ],

j = 1,2, . . . ,n.

After that, author proved that {U n} converges to the solution of the considered

problem as n → ∞. For this, first proved some apriori estimates on un
j and

un
j −αun

j−1

hα
n

using (H1). In the end, they have established that the solution is a strong solution and

it is unique.

6 Conclusion

The work [2] and [4] can be extended for further study on this field. As example we can

study this type of equation by taking some non-local condition. Also we can study the

use of Rothe’s Method to establish the existence and uniqueness of a strong solution for

a fractional neutral functional differential equation, as these types of equations have

numerous applications in the field of science and technology.
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Abstract. This article pertains to the solution of the well-known flow past a square

cylinder problem. The problem is governed by two dimensional (2D) transient Navier-

stokes (N-S) equation. A very recent higher order compact scheme has been employed

to discretize the N-S equation on nonuniform grid. The scheme adopted here shows at

least third order of spatial convergence and second order of temporal convergence. Fo-

cus of the article is laid on attaining the unsteady periodic solution of the flow problem

considered. Numerical simulations are carried out for Re = 60, 100, 200. The computed

data are presented graphically or in tabulated form along with the results available in

the literature.
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1 Nomenclature

B blockage ration u
component of velocity in the

x−direction

CD drag coefficient U∞ characteristic velocity

CL lift coefficient v
component of velocity in the

y−direction

g acceleration due to gravity λ clustering parameter

L characteristic length ν kinematic viscosity

Re Reynolds number φ unknown transport variable

St Strouhal number ψ streamfunction

t nondimensional time ω vorticity

u velocity vector

2 Introduction

The streamfunction-vorticity (ψ−ω) formulation of N-S equation in non-dimensional

form can be written as,

∂2ψ

∂x2
+ ∂2ψ

∂y2
=−ω, (4)

u
∂ω

∂x
+ v

∂ω

∂y
= 1

Re

(
∂2ω

∂x2
+ ∂2ω

∂y2

)
. (5)

where u = ψy and v = −ψx . The N-S equation governs the fluid flow of various

critical configurations found in the field of fluid dynamics. One such problem is the

flow past square cylinder problem. Owning to its theoretical significance and practical

relevance, recent years have seen noteworthy interest laid on to this problem. The im-

portance of this problem is due to their multifaceted flow configuration that depends

on the Re. This lead to various theoretical and experimental investigations of flow past

square cylinder.

The confined free flow around bluff bodies, especially cylinders with circular and
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square cross-section, has been investigated in detail by many researchers for a very

long time. These fluid-structure interaction is of practical importance in many fields of

engineering such as designing bridges, building and offshore structures. The availabil-

ity of open literature about flow past a circular cylinder is overwhelming, whereas the

analogous case of the flow past square cylinder has got much lesser attention [1, 2, 3, 4].

Nevertheless, it is well documented in the literature that accurate simulation around

bluff bodies require body fitted orthogonal grids with clustering on the surface. In the

context of finite difference approximation it entails coordinate transformation to gen-

erate grid around circular as well as square cylinder. Our formulation alleviates such

requirement and as discussed earlier should be free from destabilizing effects as noted

earlier [5]. To the best of our knowledge high order transformation free FD computa-

tion of flow past square cylinder is not available in the literature.

In this work, our focus is on simulating the flow for different values of Re. The

following section addresses problem details and the computed results of the present

investigation.

3 Results and discussion

Fig. 1: Problem 2: Schematic diagram of the configuration for flow past a square cylinder problem.

The solution procedure is now applied to unsteady flow past a stationary square

cylinder at zero incidence. The numerical setup for the flow configuration has been

presented in Fig. 1. A 2D stationary square with side length D = 1 is placed in the
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Fig. 2: Problem 2: Nonuniform grid generated using trigonometric stretching functions.

computation domain in a fashion such that the origin of the Cartesian plane coincides

with the centre of the square. The cylinder is exposed to a freestream velocity u∞ =
1. The top and bottom sidewalls of the computational domain are considered to be

equidistant from the centre of the cylinder with a distance between them kept fixed at

H . For this problem two values of H have been considered viz. H = 8D . This results

in blockages B = 0.125. In order to reduce the effects of inflow and outflow boundary

conditions on the flow field the distances of upstream and downstream boundaries

for the centre of the cylinder are considered to Lu = 8D and Ld = 30D . The Reynolds

number, defined as Re = u∞D/ν, depends on the cylinder width and the freestream

velocity with ν being the kinematic viscosity. Other boundary conditions are as shown

in Fig. 2. In this study we cluster grids on the surface of the cylinder Fig. 2.

Fig. 3: Problem 2: Time evolution of CD (red) and CL(blue) for (a) Re = 100 and (b) Re = 200.

In the highly accurate work done by Breuer et al. [2], the authors established that
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Fig. 4: Problem 2: Power spectra of CD and CL for Re = 100 and 200.

(a) (b)

Fig. 5: Problem 2: Streaklines (top) and vorticity (bottom) contours at stable periodic stage for (a) Re =
100 and (b) Re = 200.

the flow converges to an unsteady periodic state for Re ≥ 60 using a fine 561×341 grid.

Following their work, the present computations are carried out for Re = 100 and 200 on

a much coarser grid of size 283×141 in order to investigate how efficiently the present

scheme can detect unstable periodic solution beyond the bifurcation point. The time

step in both the cases are taken to be 1.0e −07. The present simulation requires large

number of nodes in the neighbourhood of the cylinder. A nonuniform grid is laid out in

the computational domain as shown in Fig. 2. Wider grid spacing has been used in the

downstream region as we strive to capture the Kármán vortex shedding phenomena

using lesser number of grid points.

Fig. 3 depicts the time history of drag coefficient (CD ) and lift coefficient (CL) for

the Re values 100 and 200 respectively. From the figures it is clear that the present
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scheme developed can capture the unsteady periodic flow with ease. To further ascer-

tain the periodic nature of the flow field spectral density analysis has been performed

and shown in Fig. 4. The relevant flow parameters viz. Strouhal number (St ), drag co-

efficient (CD ) , RMS value of lift coefficient (CL) and vortex shedding frequencies ( f ) of

this problem are compiled in Table 1. No experimental and other numerical data with

this exact numerical setup is not available in the literature.

Table 1: Problem 2: Values of CD , CL and St for Re = 100 and 200.

B Re St CD CL f

0.1250
100 0.169 1.588 0.130 5.917

200 0.190 1.500 0.245 5.263

While advancing to the unsteady periodic von Kármán vortex shedding, the flow

undergoes several phases. Once vortex shedding is initiated, vortices start shedding

in a regular fashion alternatively from both the rare sides of the cylinder. As time pro-

gresses, the vortices shed more rapidly, till it meets the desired vortex shedding fre-

quency. The shedding becomes more frequent as the value of Re increases. These

features become evident from the data shown in Table 1. These can further be corrob-

orated from Fig. 5, which displays the streaklines and corresponding vorticity contours

for both the Re values being considered.

4 Conclusion

Numerical simulation of the classical flow past a square cylinder problem is carried

out on nonuniform grid without any coordinate transformations. Unsteady periodic

solution for flow past square cylinder is reported for Re = 100 and 200. The continuous

time evolution of the flow finally leads to the von Kármań vortex shedding phenom-

ena which is clear from the streaklines and vorticity contours presented. Further, the

results computed by in the present study are compared to those found in the litera-

ture and the present values show a good agreement with the values of previous well

established investigations.

92



5 Bibliography

[1] A. Sohankar, C. Norberg, and L. Davidson, “Low-Reynolds-number flow around

a square cylinder at incidence: study of bloackage, onset of vortex shedding and

outlet boundary condition,” International Journal for Numerical Methods in Fluids,

vol. 26, pp. 39–56, 1998.

[2] M. Breuer, J. Bernsdorf, T. Zeiser, and F. Durst, “Accurate computations of the lami-

nar flow past a square cylinder based on two different methods: lattice-Boltzmann

and finite-volume,” International Journal of Heat and Fluid FLow, vol. 21, pp. 186–

196, 2000.

[3] A. Dhiman, R. Chabra, A. Sharma, and V. Eswaran, “Effects of Reynolds and Prandtl

numbers on heat transfer across a square cylinder in the steady flow regime,” Nu-

merical Heat Transfer, Part A, vol. 49, pp. 717–731, 2006.

[4] S. Sen, S. Mittal, and G. Biswas, “Flow past a square cylinder at low Reynolds num-

bers,” International Journal for Numerical Methods in Fluids, vol. 67, pp. 1160–

1174, 2011.

[5] X. Zhong, “High-order finite-difference schemes for numerical simulation of hy-

personic boundary-layer transition,” Journal of Computational Physics, vol. 144,

pp. 662–709, 1998.

93



Representation of a number as sums of

various polygonal numbers

Satyajit Gayan

Department of Mathematical Sciences, Tezpur University, Sonitpur, Assam, India

email: satyajitgayan1993@gmail.com

Abstract.Jacobi first investigated the number of ways a positive integer can be written

as a sum of two squares and found that

r{ä+ä}(n) = 4(d1,4(n)−d3,4(n)),

where r{ä+ä}(n) denotes the number of representation of n as a sum of two squares

and di , j (n) is the number of positive divisors of n congruent to i modulo j . Following

his steps many mathematicians formulate a number of similar results which involves

various polygonal numbers. In this chapter we summarize the works done so far on

such representation identities.
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1 Introduction

A polygonal number is a type of figurate number that is a generalization of triangular,

square, etc., to an n-gon for n an arbitrary positive integer. p. Starting with the nth

triangular number Tn , then
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n +Tn−1 = Tn .

Adding again, we have

n +2Tn−1 = n2 = Sn ,

which gives the nth square number. Similarly,

n +3Tn−1 = 1

2
n(3n −1) = Pn ,

gives the nth pentagonal number. Proceeding the same way r times we will get the nth

r -gonal number given by

pr
n = 1

2
n[(n −1)r −2(n −2) = 1

2
n[(r −2)n − (r −4).

Till date, there have been numerous identities that counts the number of ways a num-

ber can be represented as a sum of two or more than two polygonal numbers. The

identities can also be used to discard the possibility any such representation. For ex-

ample 5 cannot be written as a sum of two triangular numbers.

The main tools used to derive such identities are nothing but the Ramanujan’s theta

function f (a,b) and its special cases ϕ(q) and ψ(q) which are given below.

f (a,b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1)/2, | ab |< 1,

φ(q) := f (q, q) =
∞∑

n=−∞
qn2

,

ψ(q) := f (q, q3) =
∞∑

n=0
q

n(n+1)
2 .

2 Representation of a number as sums of various polygo-

nal numbers

Jacobi’s celebrated two square theorem is

Theorem 2.1. The number of representations of a positive integer n as a sum of two

squares is

r{ä+ä}(n) = 4(d1,4(n)−d3,4(n)),

95



Trending Research in Pure and Applied Mathematics

where r{ä+ä}(n) denotes the number of representation of n as a sum of of two

squares and di , j (n) is the number of positive divisors of n congruent to i modulo j .

Similar representation theorem found by Dirchlet, Lorenz, Legendre and Ramanu-

jan [2] . For example Lorenz [2] fount that

Theorem 2.2. The number of representations of a positive integer n as a sum of a squares

and three times a square is

r{ä+3ä}(n) = 2(d1,3(n)−d2,3(n))+4(d4,12(n)−d8,12(n)).

Hirschhorn [2], in 2003 proved similar results, which involves multiples of squares

and triangular numbers.

Theorem 2.3. For n ≥ 0,

r{M+M}(n) = d1,4(4n +1)−d3,4(4n +1),

r{ä+2M}(n) = d1,4(4n +1)−d3,4(4n +1),

r{2ä+ä}(n) = d1,4(8n +1)−d3,4(8n +1),

r{M+4M}(n) = 1

2
(d1,4(8n +5)−d3,4(8n +5)),

r{M+12M}(n) = 1

2
(d1,3(8n +13)−d2,3(8n +13)).

Hirschhorn [2], also proved twenty-nine representation theorems involving trian-

gular numbers, squares, pentagonal numbers and octagonal numbers. Below we list

some of them.

Theorem 2.4. For n ≥ 0,

r{M+M}(n) = d1,6(6n +1)−d5,6(6n +1),

r{ä+4π}(n) = d1,24(24n +7)+d19,24(24n +7)−d5,24(24n +7)−d23,24(24n +7),

r{M+2Ω}(n) = d1,24(24n +19)+d19,24(24n +19)−d5,24(24n +19)−d23,24(24n +19),

r{2ä+π}(n) = d1,3(24n +1)−d2,3(24n +1),

where π and Ω denotes pentagonal and octagonal numbers respectively.

In 2007 Lam [5] presented eighteen infinite products and their Lambert series ex-

pansions that involves the Ramanujan’s theya functions ϕ(q) and ψ(q). From the ob-

96



tained results, he deduce a number of representation results for the number of repre-

sentations of an integer n by eighteen quadratic forms in terms of divisor sums. He

proved the following results. In this chapter we list some of them.

Theorem 2.5.

ϕ(q)ϕ(q4) = 1+
∞∑

j=1

(−1) j q2 j

1+q4 j
−2

∞∑
j=1

(−1) j q2 j−1

1−q2 j−1
,

ϕ(q)ψ(q8) = −
∞∑

j=1

(−1) j q2 j−2

1−q2 j−1
−

∞∑
j=1

(−1) j q2 j−1

1−q4 j
,

ϕ(q4)ψ(q2) = −1

2

∞∑
j=1

(−1) j q
j−1

2

1−q
2 j−1

2

− 1

2

∞∑
j=1

(−1) j (−q)
j−1

2

1− (−q)
2 j−1

2

.

Theorem 2.6.

ϕ3(q)ψ(q8) = 2
∞∑

j=1

(−1) j q2 j

1+q4 j
−2

∞∑
j=1

(−1) j q2 j−1

1−q2 j−1
,

ϕ2(q)ψ2(q) = −
∞∑

j=1

j q j−2

1+ (−q) j
−2

∞∑
j=1

(−1) j j q4 j−1

1+q4 j
+

∞∑
j=1

(−) j (2 j −1)q2 j−2

1+q4 j−2
,

Theorem 2.7.

ϕ4(q)ϕ2(q2) = 2
∞∑

j=1

(−1) j q2 j

1+q4 j
−2

∞∑
j=1

(−1) j q2 j−1

1−q2 j−1
,

ϕ2(q)ψ2(q) = −
∞∑

j=1

j q j−2

1+ (−q) j
−2

∞∑
j=1

(−1) j j q4 j−1

1+q4 j
+

∞∑
j=1

(−) j (2 j −1)q2 j−2

1+q4 j−2
,

ψ4(q)ψ2(q2) = −
∞∑

j=1

j 2q j−1

1+ (−q)2 j−1
,

ϕ2(q)ψ4(q2) = −
∞∑

j=1

(2 j −1)2q j−1

1+ (−q)2 j−1
.

Some of the results are given by S. Ramanujan and some of them proved by S.H.

Shan. Using the above identities he proved the following representation result that

involves squares and triangular numbers.
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Corollary 2.8. For n ≥ 1,

r (�+�+�+84) = k(n)
∑

d |n+1,d odd
d ,

where

k(n)=



6 : n ≡ 1 (mod 4),

3 : n ≡ 2 (mod 4),

8 : n ≡ 3 (mod 8),

1 : n ≡ 0 (mod 4),

0 : n ≡ 7 (mod 8).

In 2012 Baruah and Sarmah [1] present sets of identities involving decagonal num-

bers, hendecagonal numbers, dodecagonal numbers, heptagonal numbers and octadecago-

nal numbers. As elementary tools they used the dissection of φ(q), ψ(q) and Gk (q),

where

Gk (q) := f (q, qk−3).

In this chapter we list some of their results.

• Identities involving decagonal numbers.

Theorem 2.9.

r (�+3F10)(n) =d1,3(16n +27)−d2,3(16n +27), (6)

r (24+3F10)(n) =1

2
(d1,3(16n +31)−d2,3(16n +31)),

r (24+F10)(n) =1

2
(d1,4(16n +13)−d3,4(16n +13)),

r (64+F10)(n) =1

2
(d1,3(16n +21)−d2,3(16n +21)),

r (34+3F10)(n) =d1,3(16n +9)−d2,3(16n +9).

• Identities involving hendecagonal numbers.
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Theorem 2.10.

r (4+F11)(n) =d1,12(36n +28)−d11,12(6n +29), (7)

r (4+2F11)(n) =d1,8(72n +107)−d7,8(72n +107),

r (F10 +F11)(n) =d1,8(144n +179)−d7,8(144n +179),

r (24+F11)(n) =d1,8(72n +67)−d7,8(72n +67),

r (�+4F11)(n) =d1,8(18n +49)+d3,8(18n +49)−d5,8(18n +49)−d7,8(18n +49).

• Identities involving dodecagonal numbers.

Theorem 2.11.

r (5�+F12)(n) =d1,4(5n +4)−d3,4(5n +4), (8)

r (F12 +F12)(n) =d1,4(5n +8)−d3,4(5n +8),

r (54+F12)(n) =1

2
(d1,4(20n +17)−d3,4(20n +17)).

• Identities involving octadecagonal numbers.

Theorem 2.12.

r (F5 +F18)(n) =d1,24(96n +151)+d19,24(96n +151)−d5,24(96n +151)−d23,24(96n +151),

(9)

r (4+F18)(n) =1

2
(d1,4(32n +53)−d3,4(32n +53)),

r (34+F18)(n) =1

2
(d1,(32n +61)−d2,(32n +61)).
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