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Preface

This book is a collection of research articles written by research scholars, postdoc fellows and faculty

members who have been doing research in the field of Mathematics and Statistics. The book begins

with six articles in algebra, then five articles in Number Theory. The remaining part of the book

covers topics from Differential Equation, Functional Analysis, Game Theory and Statistics. The

articles enunciate either some original research works or some recent developments in those areas.

It is hoped that this book would serve as a ready reference for someone who is interested in the

topics presented here. A generous sprinkling of open problems in almost all the articles makes

it easy to look for research problems in these areas and the editor hopes that it will serve the

mathematical community well.

Mr. Prabhat Dutta
Editor
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On certain generalizations of commuting

probability of a finite ring

Parama Dutta
Department of Mathematical Sciences, Tezpur University, Sonitpur, Assam, India

email: parama@gonitsora.com

Abstract. For many years people have been studying the commuting probability of an algebraic

structure its generalizations. MacHale initiated the study of commuting probability of a finite ring

in the year 1976. After MacHale, many authors have studied this ratio and its generalizations. In

this article, we give a brief survey on certain generalizations of the commuting probability of a finite

ring and collect recent results on this notion.

2010 Mathematical Sciences Classification. 16U70.

Keywords. finite ring, commuting probability.

1 Introduction

Let F be a finite algebraic structure. The commuting probability of F is given by

Pr(F ) =
|{(x, y) ∈ F × F : xy = yx}|

|F × F | .

That is Pr(F ) is the probability that a randomly chosen pair of elements of F commute. Clearly,

Pr(F ) = 1 if and only if F is commutative. The study of commuting probability was introduced

by Erdős and Tura̋n [8] in the year 1968 considering a finite group G. The commuting probability

of a finite group G, denoted by Pr(G), is defined as

Pr(G) =
|{(x, y) ∈ G×G : xy = yx}|

|G×G| .

Following Erdős and Tura̋n, many mathematicians have studied the ratio Pr(G) and its gener-

alizations. They found certain computing formulae and bounds for the probability. They also

characterized certain groups in term of this probabilities. A survey on the generalizations of Pr(G)

can be found in [3].
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8 Parama Dutta

The study of commuting probability of a finite ring was introduced by MacHale [9] in the year

1976. The commuting probability of a finite group R, denoted by Pr(R), is defined as

Pr(R) =
|{(x, y) ∈ R×R : xy = yx}|

|R×R| .

MacHale showed that for any finite ring R, Pr(R) /∈ ( 58 , 1). Unlike Pr(G), the research on Pr(R)

was neglected for many years until MacHale resumed the study of commuting probability of finite

rings together with Buckley and Shé in [1, 2]. This ratio was further studied by Dutta and Basnet

in [5]. They obtained the following results on Pr(R).

Theorem 1.1. [9, Theorem 1] If R is a finite non-commutative ring then Pr(R) ≤ 5
8 . The equality

holds if and only if |R : Z(R)| = 4.

Above theorem shows that there is no finite ring R such that Pr(R) ∈ ( 58 , 1).

Theorem 1.2. [4, Corollary 2.18] If R is a finite ring then

Pr(R) ≥ 1

|[R,R]|

(
1 +

|[R,R]| − 1

|S : Z(R)|

)
.

Theorem 1.3. [9, Theorem 2] Let R be a non-commutative ring and p the smallest prime dividing
order of R. Then

Pr(R) ≤ p2 + p− 1

p3
.

The equality holds if and only if |R : Z(R)| = p2.

Theorem 1.4. [9, Theorem 4] If S is a subring of a finite ring R then Pr(R) ≤ Pr(S).

Theorem 1.5. [5, Theorem 2.1(b)] Let R be a finite non-commutative ring. If p is the smallest
prime dividing |R| then

Pr(R) ≤ (p− 1)|Z(R)|+ |R|
p|R|

with equality if and only if |R : CR(r)| = p for all r /∈ Z(R).

Theorem 1.6. [5, Theorem 2.3] Let N be an ideal of a finite non-commutative ring R. Then

Pr(R) ≤ Pr(R/N) Pr(N).

The equality holds if N ∩ [R,R] = {0}.

In this article, we discuss certain generalization of commuting probability of finite rings and

give a brief survey of the results obtained for these generalizations.
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2 Relative commuting probability of a finite ring

Let S be a subring of a finite ring R. Dutta et al. [4] generalized Pr(R) through the following ratio

Pr(S,R) :=
|{(x, y) ∈ S ×R : xy = yx}|

|S ×R|

where S is a subring of R. Pr(S,R) is called relative commuting probability of R with respect of

the subring S. They obtained the following results on Pr(S,R).

Theorem 2.1. [4, Theorem 2.5] Let S be a subring of a finite ring R and p be the smallest prime
dividing |R|. Then

|Z(S,R)|
|S| +

p(|S| − |Z(S,R)|)
|S||R| ≤ Pr(S,R) ≤ (p− 1)|Z(S,R)|+ |S|

p|S| ,

where Z(S,R) := {s ∈ S : sr = rs for all r ∈ R}.

Theorem 2.2. [4, Theorem 2.16] Let S be a subring of a finite ring R. Then

Pr(S,R) ≥ 1

|K(S,R)|

(
1 +

|K(S,R)| − 1

|S : Z(S,R)|

)
.

Theorem 2.3. [4, Theorem 2.17] Let S be a subring of a finite ring R. Then

Pr(S,R) ≥ 1

|[S,R]|

(
1 +

|[S,R]| − 1

|S : Z(S,R)|

)
.

Theorem 2.4. Let S be a commutative subring of a finite ring R such that Pr(S,R) = 2p−1
p2 , for

some prime p. Then p divides |R|. Moreover, if p is the smallest prime dividing |R|, then

S

Z(S,R)
∼= Zp.

Theorem 2.5. [4, Theorem 2.10] Let S be a non-commutative subring of a finite ring R such that

Pr(S,R) = p2+p−1
p3 , for some prime p. Then p divides |R|. Moreover, if p is the smallest prime

dividing |R|, then
S

Z(S,R)
∼= Zp × Zp.

Let [R,R] be the subgroup of (R,+) generated by all additive commutators of R and Z(R) :=

{x ∈ R : xy = yx for all y ∈ R}. In [2], Buckley et al. introduced the notion of Z-isoclinism of

rings. Two rings R1 and R2 are said to be Z-isoclinic if there exists an isomorphism ψ from the

factor group R1

Z(R1)
to R2

Z(R2)
, and an isomorphism β from [R1, R1] to [R2, R2] such that the following

diagram commutes

R1

Z(R1)
× R1

Z(R1)

ψ×ψ−−−−→ R1

Z(R1)
× R1

Z(R1)⏐⏐� ⏐⏐�
[R1, R1]

β−−−−→ [R2, R2].
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Buckley et al. [2] also proved that commuting probabilities of two Z-isoclinic finite rings are same.

Dutta et al. [4] further generalized the notion of Z-isoclinism, given in the following definition.

Definition 2.6. [4, Definition 5.1] Let R1 and R2 be two rings with subrings S1 and S2 respectively.
A pair (S1, R1) is said to be Z-isoclinic to (S2, R2) if there exist additive group isomorphisms

α : R1

Z(S1,R1)
→ R2

Z(S2,R2)
such that α

(
S1

Z(S1,R1)

)
= S2

Z(S2,R2)
and β : [S1, R1] → [S2, R2] such that

β([u1, v1]) = [u2, v2] whenever ui ∈ Si, vi ∈ Ri for i = 1, 2; α(u1+Z(S1, R1)) = u2+Z(S2, R2) and
α(v1 + Z(S1, R1)) = v2 + Z(S2, R2). Such a pair of mappings (α, β) is called Z-isoclinism between
the pairs of rings (S1, R1) and (S2, R2).

Recently, Dutta et al. [4] proved the following results.

Theorem 2.7. [4, Theorem 3.3] Let R1 and R2 be two finite rings with subrings S1 and S2 respec-
tively. If the pairs (S1, R1) and (S2, R2) are Z-isoclinic then

Pr(S1, R1) = Pr(S2, R2).

It is observed that the above results may be generalized for the generalized commuting proba-

bilities of finite rings Prr(R),Prr(S,R) and Prr(S,K) where S,K are additive subgroups of R and

r is a given element of R.

Dutta and Nath [6] further generalized the notion of relative commuting probability of a ring R
through the following ratio

Prr(S,R) =
|{(x, y) ∈ S ×R : [x, y] = r}|

|S||R| .

Prr(S,R) is called relative r-commuting probability of a finite ring R with respect to the subring

S of R. They have obtained the following results.

Theorem 2.8. [6, Proposition 1] Let S be a subring of a finite ring R and r ∈ R. Then Prr(S,R) =

Pr−r(R,S). However, if 2r = 0 then Prr(S,R) = Prr(R,S).

Theorem 2.9. [6, Proposition 2] Let S1 and S2 be two subrings of the finite rings R1 and R2

respectively. If (r1, r2) ∈ R1 ×R2 then

Pr(r1,r2)(S1 × S2, R1 ×R2) = Prr1(S1, R1)Prr2(S2, R2).

Theorem 2.10. [6, Proposition 3] Let S be a subring of a finite ring R. If p is the smallest prime
dividing |R| and r �= 0 then

Prr(S,R) ≤ |S| − |Z(S,R)|
p|S| <

1

p
.

Theorem 2.11. [6, Proposition 4] Let S be a subring of a finite ring R. Then Prr(S,R) ≤ Pr(S,R)

with equality if and only if r = 0.

Theorem 2.12. [6, Proposition 5] If S1 ⊆ S2 are two subrings of a finite ring R then

Prr(S1, R) ≤ |S2 : S1|Prr(S2, R).
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Theorem 2.13. [6, Corollary 3] If S is a subring of a finite ring R then

Prr(S,R) ≤ |R : S|Prr(R).

For any subring S of R, let mS = min{|[x,R]| : x ∈ S \ Z(S,R)} and MS = max{|[x,R]| : x ∈
S \ Z(S,R)}. In the following theorem, we give bounds for Pr(S,R) in terms of mS and MS .

Theorem 2.14. [6, Theorem 2] Let S be a subring of a finite ring R. Then

1

MS

(
1 +

MS − 1

|S : Z(S,R)|

)
≤ Pr(S,R) ≤ 1

mS

(
1 +

mS − 1

|S : Z(S,R)|

)
.

The equality holds if and only if mS = MS = |[x,R]| for all x ∈ S \ Z(S,R).

It is worth mentioning here that the lower bound obtained in Theorem 2.14 is better than the

lower bound given in Theorem 2.2 for Pr(S,R) and the upper bound obtained in Theorem 2.14 is

better than the upper bound given in Theorem 1.2 for Pr(R).

3 Generalized commuting probability of a finite ring

Let S and K be two additive subgroups of R and r ∈ R. Dutta and Nath [7] defined Prr(S,K) in

the following way

Prr(S,K) =
|{(s, k) ∈ S ×K : [s, k] = r}|

|S ×K| .

Thus Prr(S,K) is the probability that the additive commutator of a randomly chosen pair of

elements, one from S and the other from K, is equal to a given element r of R. Prr(S,K) is called

generalized r-commuting probability of R with respect to the subgroups S and K. If r = 0 then

we write

Prr(S,K) = Pr(S,K) =
|{(s, k) ∈ S ×K : sk = ks}|

|S ×K| .

Note that if S is a subring and K = R then Pr(S,K) coincides with Pr(S,R).

Let [S,K] and [s,K] for s ∈ S denote the additive subgroups of (R,+) generated by the sets

{[s, k] : s ∈ S, k ∈ K} and {[s, k] : k ∈ K} respectively. Let Z(S,K) := {s ∈ S : sk = ks for all k ∈
K}. Dutta and Nath obtained the following computing formula for Prr(S,K).

Theorem 3.1. [7, Theorem 2.1] Let S and K be two additive subgroups of R. Then

Prr(S,K) =
1

|S||K|
∑
s∈S

r∈[s,K]

|CK(s)| = 1

|S|
∑
s∈S

r∈[s,K]

1

|[s,K]| .

Further they found the following bounds for Prr(S,K).

Theorem 3.2. [7, Proposition 3.1] Let S and K be two additive subgroups of R. If r �= 0 then

1. Prr(S,K) ≥ |Z(S,K)||Z(K,S)|
|S||K| .

2. If S ⊆ K then Prr(S,K) ≥ 2|Z(S,K)||Z(K,S)|
|S||K| .
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Theorem 3.3. [7, Proposition 3.4] If S1 ⊆ S2 and K1 ⊆ K2 are additive subgroups of R then

Prr(S1,K1) ≤ |S2 : S1||K2 : K1|Prr(S2,K2).

Theorem 3.4. [7, Proposition 3.5] Let S,K1 and K2 be three additive subgroups of R. If K1 ⊆ K2

then

Pr(S,K1) ≥ Pr(S,K2) ≥
1

|K2 : K1|

(
Pr(S,K1) +

|K2| − |K1|
|S||K1|

)
.

The first equality holds if and only if [s,K1] = [s,K2] for all s ∈ S and the second equality holds if
and only if CS(k) = {0} for all k ∈ K2 \K1.

Theorem 3.5. [7, Proposition 3.6] Let S ⊆ K be two additive subgroups of R. If p is the smallest

prime dividing |R| and |S : Z(S,K)| = pn then Pr(S,K) ≤ pn+p−1
pn+1 . Moreover, if S = K then we

have Pr(S,K) ≥ pn+pn−1−1
p2n−1 .

Theorem 3.6. [7, Theorem 3.1] Let S and K be two additive subgroups of R and p the smallest
prime dividing |R|. Then

Pr(S,K) ≥|Z(S,K)|
|S| +

p(|S| − |XS | − |Z(S,K)|) + |XS |
|S||K|

and Pr(S,K) ≤ (p− 1)|Z(S,K)|+ |S|
p|S| − |XS |(|K| − p)

p|S||K|

where XS = {s ∈ S : CK(s) = {0}}. Moreover, in each of these bounds, S and K can be inter-
changed.

Theorem 3.7. [7, Proposition 3.7] Let S and K be two additive subgroups of R. Then

Pr(S,K) ≥ 1

|[S,K]|

(
1 +

|[S,K]| − 1

|S : Z(S,K)|

)
.

In particular, if Z(S,K) �= S then Pr(S,K) > 1
|[S,K]| .

Dutta and Nath also characterize ring R in terms of the ratio Pr(S,K). The following results

give some characterizations.

Theorem 3.8. [7, Theorem 3.2] Let S and K be two additive subgroups of R such that Pr(S,K)

= 2p−1
p2 for some prime p. Then p divides |R|. If p is the smallest prime dividing |R| then

S

Z(S,K)
∼= Zp

∼=
K

Z(K,S)

and hence S �= K. In particular, if Pr(S,K) = 3
4 then

S

Z(S,K)
∼= Z2

∼=
K

Z(K,S)
.
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Theorem 3.9. [7, Theorem 3.3] Let S ⊆ K be two non-commutative additive subgroups of R and

Pr(S,K) = p2+p−1
p3 for some prime p. Then p divides |R|. If p is the smallest prime dividing |R|

then
S

Z(S,K)
∼= Zp × Zp.

In particular, if Pr(S,K) = 5
8 then S

Z(S,K)
∼= Z2 × Z2.

The following theorem gives partial converse of Theorem 3.8 and Theorem 3.9.

Theorem 3.10. [7, Theorem 3.4] Let S ⊆ K be two additive subgroups of R.

1. If S
Z(S,K)

∼= Zp and |K : S| = n then Pr(S,K) ≥ n+p−1
np . Further, if p is the smallest prime

dividing |R| and |K : S| = p then Pr(S,K) = 2p−1
p2 .

2. If S
Z(S,K)

∼= Zp ×Zp and |K : S| = n then Pr(S,K) ≥ (n+2)p2−2
np4 . Further, if p is the smallest

prime dividing |R| and |K : S| = 1 then Pr(S,K) = p2+p−1
p3 .

Theorem 3.11. [7, Theorem 3.5] Let S and K be two additive subgroups of R and I be an ideal
of R such that I ⊆ S ∩K. Then

Pr(S,K) ≤ Pr

(
S

I
,
K

I

)
Pr(I).

The equality holds if I ∩ [S,R] = {0}.

We conclude with the following generalization of Theorem 2.7.

Theorem 3.12. [7, Theorem 4.1] Let R1 and R2 be two finite non-commutative rings with additive
subgroups S1,K1 and S2,K2 respectively. If φ1 : S1

Z(S1,R1)
→ S2

Z(S2,R2)
, φ2 : K1

Z(K1,R1)
→ K2

Z(K2,R2)

and ψ : [S1,K1]→ [S2,K2] are additive group isomorphisms such that

a(S2,K2) ◦ (φ1 × φ2) = ψ ◦ a(S1,K1),

where a(Si,Ki) :
Si

Z(Si,Ri)
× Ki

Z(Ki,Ri)
→ [Si,Ki] are well defined maps given by

a(Si,Ki)(xi + Z(Si, Ri), yi + Z(Ki, Ri)) = [xi, yi]

for all xi ∈ Si, yi ∈ Ki and i = 1, 2; and

(φ1 × φ2)(x1 + Z(S1, R1), y1 + Z(K1, R1)) = (x2 + Z(S2, R2), y2 + Z(K2, R2))

whenever φ1(x1 + Z(S1, R1)) = x2 + Z(S2, R2) and φ2(y1 + Z(K1, R1)) = y2 + Z(K2, R2), then

Prr(S1,K1) = Prψ(r)(S2,K2).
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Abstract. In this chapter, we shall highlight the outcomes of a survey on graphs related to rings.

Here we have studied graphs, which are found from a ring with a specific condition. Results stated

here can be used to develop some further ideals. Here we mainly focus on graph-theoretic properties

like girth, clique number, diameter, dominating set, chromatic index etc. of some graphs related to

rings.
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Keywords. Zero divisor graph, Idempotent divisor graph, Nilpotent divisor graph, Nil clean graph

of a ring, Nil clean ring, Weakly nil clean ring.

1 INTRODUCTION

Throughout our discussion, unless or otherwise explicitly stated, R will denote an associative

ring with unity. We will use the symbols Reg(R), Nil(R), U(R) and Idem(R) respectively to denote

the set of all von Neumann regular elements, nilpotent elements, units and idempotents of R. Also

J(R) will denote the Jacobson radical ofR. LetM be a leftRmodule. We denote the endomorphism

ring of M by end(M) and denote the ring of n× n matrices over the ring R by Mn(R). A ring R
is called a reduced ring if it has no non-zero nilpotent elements.

In ring theory, many mathematician have studied graph theoretic properties of a graph associ-

ated with a ring. Beck [5] studied colouring of a graph of a finite commutative ring R in 1988, where

the vertex set is R and any two vertices x and y are adjacent if and only if xy = 0. Grimaldi [8]

defined and studied a notion of graph G(Zn), known as unit graph associated with Zn, the ring of

integer modulo n. In this graph, the vertex set is Zn and two distinct vertices x and y are adjacent

if and only if x+ y is unit. Further Ashrafi, Pournaki, Maimani and Yassemi [2] generalised G(Zn)

to G(R), for any arbitrary associative ring R with non zero identity. An element r of a ring R is

said to be a nil clean element of R, if r can be expressed as r = e + n, where e ∈ Idem(R) and

n ∈ Nil(R), also R is said to be nil clean ring [7] if all the elements are nil clean element. The set

of all nil clean elements of a ring R is denoted ny NC(R). A ring R is said to be weakly nil clean

ring [4, 6] if for any x ∈ R, x = e+ n or x = e− n, where e ∈ Idem(R) and n ∈ Nil(R). A ring R
is called null ring if R2 = {0}. In 2018, Basnet and Bhattacharyya [3] introduced nil clean graph

15
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GN (R) associated with a finite commutative ring R, where the vertex set is R and two distinct

vertices x and y are adjacent if and only if x + y is nil clean element of R. In 2010, Li et al. [10]

studied a kind of graph structure of a ring R, known as nilpotent divisor graph of R, whose vertex

set is {x ∈ R : x �= 0, ∃ y( �= 0) ∈ R such that xy is nilpotent} and two vertices x and y are adjacent

if xy is nilpotent. In 2018, Kimball and LaGrange [9] generalized the concept of zero divisor graph

to idempotent divisor graph. For any idempotent e ∈ R, they defined the idempotent divisor graph

Γe(R) associated with e, where V (Γe(R)) = {a ∈ R : there exists b ∈ R with ab = e} and two

vertices a and b are adjacent if ab = e. We refer [1, 2, 5, 11] for more work on graph associated

with rings.

2 A survey on graph related to rings

In this section, we mention some results related to graphs obtained from rings and its graph theoretic

properties like girth, clique number, diameter, dominating set, chromatic index etc.

Preliminaries

Here we mention some preliminaries about graph theory. Let G be a graph. The degree of the

vertex v ∈ G denoted by deg(v), is the number of edges adjacent with v. A graph G is said to be

connected if for any two distinct vertices of G, there is a path in G connecting them. Number of

edges on the shortest path between vertices x and y is called the distance between x and y and is

denoted by d(x, y). If there is no path between x and y then we say d(x, y) =∞. The diameter of

a graph G, denoted by diam(G), is the maximum of distances of each pair of distinct vertices in

G. Also girth of G is the length of the shortest cycle in G, denoted by gr(G). Note that if there is

no cycle in G then gr(G) =∞. A complete graph is a simple undirected graph in which every pair

of distinct vertices is connected by a unique edge. A bipartite graph G is a graph whose vertices

can be divided into two disjoint parts V1 and V2, such that V (G) = V1 ∪ V2 and every edge in G
has the form e = (x, y) ∈ E(G), where x ∈ V1 and y ∈ V2. Note that no two vertices both in V1

or both in V2 are adjacent. A complete bipartite graph is a graph where every vertex of the first

part V1 is connected to every vertex of the second part V2, denoted by Km,n, where |V1| = m and

|V2| = n. A complete bipartite graph K1,n is called star graph.

A clique is a subset of vertices of an undirected graph such that its induced subgraph is complete.

A clique having n number of vertices is called n-clique. The maximum clique of a graph is a clique

such that there is no clique with more vertices. The clique number of a graph G is denoted by ω(G)

and defined by the number of vertices in the maximal clique of G. A coclique in a graph G is a set

of pairwise nonadjacent vertices. An edge colouring of a graph G is a map C : E(G)→ S, where S
is a set of colours such that for all e1, e2 ∈ E(G), if e1 and e2 are adjacent then C(e1) �= C(e2). The
chromatic index of a graph G is denoted by χ′(G) and is defined as the minimum number of colours

needed for a proper colouring of G. A dominating set for a graph G is a subset D of a vertex set

of G such that every vertex not in D is adjacent to at least one member of D. The domination

number γ(G) is the number of vertices in a smallest dominating set for G.

Some results on graphs related to rings

In this subsection, we give some results about graphs related to rings. These results will help for

the future study about graphs related to rings, which will also be useful to extend the ideas of the
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following graphs obtained from a ring.

• In 1986, I. Beck [5] present the idea of coloring of a commutative ring. This idea establishes a

connection between graph theory and commutative ring theory which hopefully will turn out

to be mutually beneficial for these two branches of mathematics. In this paper, Beck mainly

interested in characterizing and discussing the rings which are finitely colorable, which will be

a possible applications to graph theory. For a commutative ring R, he defined a graph whose

vertex set is R and two vertices x and y are adjacent if xy = 0. This graph is known as a zero

divisor graph of a commutative ring R. Some of his results are listed below:

Proposition 2.1. (1) χ(R) = 1 if and only if R is the zero ring.

(2) χ(R) = 1 if and only if R is an integral domain, R ∼= Z4 or R ∼= Z2[X]/(X2).

Proposition 2.2. Let p1, p2, · · · pk, q1, q2, · · · qr are distinct prime numbers and N = p2n1
1 .p2n2

2 .
· · · .p2nk

k .q2m1+1
1 .q2m2+1

2 . · · · .q2mr+1
r . Then

χ(ZN ) = ω(ZN ) = pn1
1 .pn2

2 . · · · .pnk

k .qm1
1 .qm2

2 . · · · .q2mr
r

An element x ∈ R is called finite if the ideal Rx is a finite set. Beck also studied rings having

finite chromatic index.

Lemma 2.3. (1) Suppose that R has an infinite number of finite elements. Then R contains
an infinite clique.

(2) Let I be a finite ideal of R. Then the ring R contains an infinite clique if and only if
R/I has an infinite clique.

(3) If the ring contains a nilpotent element which is not finite then R contains an infinite
clique.

(4) If the nil radical of R is infinite then R has an infinite clique.

Theorem 2.4. For a reduced ring R, the following are equivalent.

(1) χ(R) is finite.

(2) ω(R) is finite.

(3) The zero-ideal in R is the finite intersection of prime ideals.

(4) R does not contain an infinite clique.

He also proved the following main results.

Theorem 2.5. Let R be a reduced ring �= (0). If χ(R) <∞, then R has only a finite number
of minimal prime ideals. If n is this number then χ(R) = ω(R) = n+ 1.

Theorem 2.6. Let R be a ring which contains a finite ideal which is a intersection of prime
ideals. Then the radical of any finite ideal is finite and equals a finite intersection of prime
ideals. Furthermore, the ring has only a finite number of finite ideals.

Definition 2.7. A ring R is called a Coloring provided χ(R) is finite.
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Given an ideal K, radK = {e ∈ R | rn ∈ K}. The set of zero divisors in R is denoted by

Z(R). A prime ideal P is an associated prime ideal if P = Ann(x), for some x ∈ R. Here

Ass(R) denotes the set of all associated prime ideals of R.

Theorem 2.8. Let R be a Coloring. Then Ass(R) is finite and Z(R) =
⋃

P∈Ass(R) P .
Furthermore, any minimal prime ideal P is an associated prime ideal and RP is a field or a
finite ring.

Theorem 2.9. Let P be an associated prime ideal in a Coloring. Then either RP is a field
or P is a maximal ideal.

Theorem 2.10. 1. A subring of a Coloring is also a Coloring.

2. A finite product of Coloring is a Coloring.

Theorem 2.11. 1. Let I be a finite ideal in a Coloring R. Then R/I is a Coloring.

2. Let I be a finitely generated ideal in a Coloring. Then R/Ann(I) is a Coloring.

• In 1990, Grimaldi [8] defined and studied a notion of graph G(Zn), known as unit graph

associated with Zn, the ring of integer modulo n. In this graph, the vertex set is Zn and two

distinct vertices x and y are adjacent if and only if x+ y is unit.

• Further Ashrafi, Pournaki, Maimani and Yassemi [2] generalized the notion of unit graph

G(R) to any arbitrary ring R. For any ring R, the vertex set of G(R) is R and two distinct

elements x and y are adjacent if and only if their sum is a unit. Some of their results are

stated below:

Proposition 2.12. Let R be a finite ring. Then the following statements hold for the unit
graph of R.

(1) If 2 /∈ U(R), then the unit graph G(R) is a |U(R)|-regular graph.

(2) If 2 ∈ U(R), then for every x ∈ R \ U(R) we have deg(x) = |U(R)|.

Lemma 2.13. Let R be a commutative ring. If x, y ∈ R, then the following statement hold:

(1) If x + J(R) and y + J(R) are adjacent in G(R/J(R)), then every element of x + J(R)

is adjacent to every element of y + J(R) in G(R).

(2) If 2x /∈ U(R), then x+ J(R) is a coclique in G(R).

(3) If 2x ∈ U(R), then x+ J(R) is a clique in G(R).

They also characterized unit graphs of rings. Some of the results about the characterization

is given below:

Theorem 2.14. Let R be a ring. Then the unit graph G(R) is a complete graph if and only
if R is a division ring with Char(R) = 2.

Theorem 2.15. Let R be a commutative ring and M be a maximal ideal of R such that
|R/M | = 2. Then G(R) is a bipartite graph. Moreover the unit graph G(R) is a complete
bipartite graph if and only if R is a local ring.
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Theorem 2.16. Let R be a finite commutative ring. Then the unit graph G(R) is planar if
and only if R is isomorphic to one of the following rings.

(1) Z3,

(2) Z3 × Z3,

(3) Z2 × · · · × Z2 × S (product occurs l + 1-times and l ≥ 0), where S ∼= Z2 or S ∼= Z3 or

S ∼= Z4 or S ∼= F4 or S ∼= {
(

a b
0 a

)
| a, b ∈ Z2}.

They also studied diameter and girth of unit graph of a ring.

Theorem 2.17. If R is a finite commutative ring. Then diam(G(R)) ∈ {1, 2, 3,∞}.

Theorem 2.18. Let,R be a finite commutative ring. Then the following statement hold:

(1) diam(G(R)) = 1 if and only if R is a field with Cgar(R) = 2.

(2) diam(G(R)) = 2 if and only if one of the following cases occur:

(a) R is a field with Char(R) �= 2.

(b) R is not a field and R cannot have Z2 as a quotient.

(c) R is local ring with maximal ideal M such that |R/M | = 2 and R � Z2.

(3) diam(G(R)) = 3 if and only if R has quotient and cannot have Z2 × Z2 as a quotient
and R is not a local ring.

(4) diam(G(R)) =∞ if and only if R has Z2 × Z2 as a quotient.

Theorem 2.19. Let R be a finite commutative ring. Then gr(R) ∈ {3, 4, 6,∞}.

• In 2017, D. Basnet and J. Bhattacharyya defined and studied the notion of nil clean graph

of a finite commutative ring. For a finite commutative ring R, the nil clean graph of R is

denoted by GN (R), where the vertex set is R and two vertices x and y are adjacent if and

only if x + y can be expressed as a sum of nil clean element and idempotent element of R.

They have studied graph theoretic properties like girth, dominating set, diameter etc. for a

nil clean graph of a finite commutative ring. Some of their results are the following:

Theorem 2.20. The following hold for nil clean graph GN (R) of R:

(1) If R is not a field, then the girth of GN (R) is equal to 3.

(2) girth is infinite otherwise.

Theorem 2.21. Let R be a weakly nil clean ring then {1, 2} is a dominating set for GN (R).

Theorem 2.22. If R be a finite commutative ring, then the nil clean graph of R is of class
1.

Theorem 2.23. Let R be a non clean ring, weakly nil clean ring with no non trivial idempo-
tents then diam(GN (R)) = 2.

Theorem 2.24. Let R = A × B, such that A is nil clean but B is weakly nil clean with no
non trivial idempotents, then diam(GN (R)) = 2.
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Theorem 2.25. Let n be a positive integer, then the following hold for Zn:

(1) If n = 2k, for some integer k ≥ 1, then diam(GN (Zn)) = 1.

(2) If n = 2k3l, for some integer k ≥ 0 and l ≥ 1, then diam(GN (Zn)) = 1.

(3) For a prime p, diam(GN (Zp)) = 1

(4) If n = 2p, where p is an odd prime, then diam(GN (Zn)) = p− 1.

(5) If n = 3p, where p is an odd prime, then diam(GN (Zn)) = p− 1

• In 2010, Li et al. [10] studied a kind of graph structure ΓN (R) of a ring R, known as nilpotent

divisor graph of R, whose vertex set is {x ∈ R : x �= 0, ∃ y( �= 0) ∈ R such that xy is nilpotent}
and two vertices x and y are adjacent if and only if xy is nilpotent. This graph is a natural

generalization of zero divisor graph. Some of their results are given below:

Theorem 2.26. Assume that R is a nonreduced commutative ring and ΓN (R) is not a sin-
gleton. Then the following statements are equivalent:

(1) gr(ΓN (R)) =∞.

(2) ΓN (R) is a star graph.

(3) R is either a null ring of order 3, or Nil(R) is a prime ideal of R with |Nil(R)| = 2.

Theorem 2.27. Let R be a regular ring with identity 1. Then the following hold:

(1) ΓN (R) is connected.

(2) diam(ΓN (R)) ≤ 3.

(3) If ΓN (R) contains a cycle, then gr(ΓN (R)) ≤ 4. Moreover if R is nonreduced, then
gr(ΓN (R)) = 3.

Theorem 2.28. Assume that R is a nonreduced regular ring and ΓN (R) is a star graph.
Then the following hold:

(1) ΓN (R) has exactly two vertices if and only if R is a nilpotent ring with order 3.

(2) If ΓN (R) has at least three vertices, then Nil(R) is a prime ideal of R with |Nil(R)| = 2.

Theorem 2.29. Let R be a finite commutative ring. Then χ′(ΓN (R)) = Δ(ΓN (R)) unless R
is a nilpotent ring with even order.

Theorem 2.30. Let R be a finite reduced commutative ring and S be a commutative ring
which is not an integral domain. If ΓN (R) ∼= ΓN (S), then R ∼= S, unless R ∼= Z2 × Z2 and S
is a null ring of order 3, or R ∼= Z2×Z3 and S is isomorphic to either R ∼= Z4 or Z2[x]/(x

2).

Theorem 2.31. Assume that R and S are finite nonreduced commutative rings such that
ΓN (R) ∼= ΓN (S). Then |R| = |S| and |Nil(R)| = |Nil(S)|.

• In 2018, Kimball and LaGrange [9] generalized the concept of zero divisor graph to idempotent

divisor graph. For any idempotent e ∈ R, they defined the idempotent divisor graph Γe(R)

associated with e, where V (Γe(R)) = {a ∈ R : there exists b ∈ R with ab = e} and two

vertices a and b are adjacent if ab = e. Notice that if e = 0 then Γe(R) is a idempotent divisor

graph of R.
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Abstract. Let G be a finite group and a ∈ G. We write o(a) to denote the order of a, that is

the smallest positive integer m such that am is the identity element of G. The coprime graph of

G, denoted by CG, is a simple undirected graph whose vertex set is G and two distinct vertices

x and y are adjacent if and only if o(x) and o(y) are relatively prime. In this chapter, we have

studied some of the properties of coprime graphs CG of finite groups. In particular, we have chosen

dihedral group D2n = 〈a, b : an = b2 = 1, bab−1 = a−1〉, and studied the properties of its coprime

graph denoted by CD2n along with it we have also tried to determine characteristics polynomials

of adjacency matrices, laplacian matrices and signless laplacian matrices of these coprime graphs,

CD2n .
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1 Introduction

The coprime graph of a finite group G is a simple undirected graph whose vertex set is G and two

distinct vertices x and y are adjacent if and only if o(x) and o(y) are relatively prime, we shall

denote it by CG.
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For example, Fig.1 and Fig.2 are the coprime graphs of Z6 and S3 respectively.

The coprime graph of a group G was introduced and studied by Ma, Wei and Yang [2] in the

year 2014, later this graph was further studied by Dorbidi [1] in 2016. They have obtained the

following results.

Proposition 1.1. [2, Proposition 2.1] Let G be any group. Then diam(CG) ≤ 2. In particularly,
CG is connected and the girth of CG equals 3 or ∞.

Proposition 1.2. [2, Proposition 2.3] Let G be a group. Then diam(CG) = 1 if and only if G is
isomorphic to cyclic group Z2 with order 2.

Corollary 1.3. [2, Corollary 2.4] The CG is regular if and only if the group G is isomorphic to Z2.

Corollary 1.4. [2, Corollary 2.5] The CG is not complete whenever the group G is of order greater
than 2.

Theorem 1.5. [1, Theorem 3.2] The CG is a complete r-partite graph if and only if the order of
every non-identity element of the group G is a prime power and r = |π(G)|+ 1, where π(G) is the
set of prime divisors of o(G).

Proposition 1.6. [2, Proposition 2.11] Let G be a cyclic group with order 2p for some odd prime
p. Then CG is planar.

Theorem 1.7. [1, Theorem 3.6]The CG is a planar graph if and only if the group G is a p-group
or G ∼= Z2 ×Q, where Q is a q-group.

Proposition 1.8. [2, Proposition 2.13] If two groups G1 and G2 are isomorphic, that is, G1
∼= G2,

then their coprime graphs are also isomorphic, that is, CG1
∼= CG2 .

Remark 1.9. [2, Remark 2.14] The converse of [Proposition 1.8] is not true. Let G1 = D8 and let
G2 = Z8. We see that G1 and G2 are 2-groups. Clearly CG1

∼= CG2 , but G1 �∼= G2.
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Theorem 1.10. [2, Theorem 3.1] Let G be a group of order pr11 pr22 ...prnn , where pi is a prime for
every i ∈ {1, 2, ..., n} and ri is a non-negative integer for every i ∈ {1, 2, ..., n}. Then CG has no
end-vertex if and only if G has no elements of order pk1

1 pk2
2 ...pkn

n , where 1 ≤ ki ≤ ri.

Proposition 1.11. [2, Proposition 3.3] Let G be a group of order n, where n ≥ 3. If G is cyclic,
then CG contains some end-vertex. Particularly, the number of end-vertices of CG is greater than
or equal to φ(n).

Remark 1.12. [2, Remark 3.4] In general, the converse of [Proposition 1.11] is false. Such as
the Klein 4-group K2 ×K2 or the dihedral group D8, they are non-cyclic. However, CK2×K2

and
CD8 have 3 end-vertices and 7 end-vertices, respectively. More specifically that every p-group of
non-cyclic is a counter-example.

The following theorem is a generalization of [Proposition 1.11].

Theorem 1.13. [1, Theorem 3.8] If G is a nilpotent group of order n then CG has f(n) end vertices,
where f(n) =

∑
d|n φ(d).

Theorem 1.14. [2, Theorem 3.5] Let G be a group with order greater than 2. Then CG contains
precisely two end-vertices if and only if G is isomorphic to Z3 or Z6, or a non-cyclic group G
satisfying the following conditions:

1. π(G) = {2, 3}, where π(G) is the set of prime divisors of o(G);

2. G contains two elements x and y, such that o(x) = o(y) = 6 and y = x−1;

3. o(g) < 6 for every g ∈ G, where g �= x, y.

2 Coprime graph of dihedral groups

For n ≥ 3, the dihedral group D2n = 〈a, b : an = b2 = 1, bab−1 = a−1〉. That is, D2n =

{a1, a2, a3, ..., an = e, a1b, a2b, a3b, ..., anb}. Fig.3 and Fig.4 are the coprime graphs of D6 and D8

respectively.
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Below we have mentioned some theoretical properties which hold for the coprime graphs of the

dihedral groups, such as degree, traversability, planarity etc. derived by Ma, Wei and Yang [2].

Theorem 2.1. [2, Theorem 5.1] Let CD2n be the coprime graph of D2n and let n be odd. Then

1. deg(aib) = n for any 1 ≤ i ≤ n;

2. deg(ai) ≥ n for any 1 ≤ i ≤ n;

3. CD2n is not Eulerian;

4. CD2n is Hamiltonian;

5. CD2n is not planar.

Corollary 2.2. [2, Corollary 5.2] Let n be an odd prime. Then CD2n
∼= K1,n−1,n.

Theorem 2.3. [2, Theorem 5.3] Let, n = 2kpr11 pr22 ...prmm , where pi is a prime integer and ri is a
non-negative integer for any 1 ≤ i ≤ m and k is a positine integer. Then

1. The number of end-vertices of CD2n is
∑

d|n φ(d), where 2p1p2...pm is a divisor of d. In
particular, CD2n contains an end-vertices;

2. CD2n
is not Eulerian;

3. CD2n
is not Hamiltonian;

4. CD2n is not planar.

Corollary 2.4. [2, Corollary 5.4] Let n = 2k for some positive integer k. Then CD2n
∼= K1,2k+1−1.

Corollary 2.5. [2, Corollary 5.5] CD2n
is planar if and only if n = 2k for some positive integer k.

3 Computing characteristics polynomial of A(CD2n)

In this section we compute characteristics polynomial and spectrum(if possible) of adjacency ma-

trices of CD2n denoted by charpoly(A(CD2n)) and Spec(CD2n) respectively for different forms of n.

We consider the following three cases.

Case 1: n is odd

For n = 3, we have

A(CD6
) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1 1 1 1

0 0 1 1 1 1

1 1 0 1 1 1

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then charpoly(A(CD6
)) = λ3(λ3 − 11λ− 12).
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For n = 5, we have

A(CD10
) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then charpoly(A(CD10
)) = λ7(λ3 − 29λ− 40).

For n = 7, we have

A(CD14) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then charpoly(A(CD14
)) = λ11(λ3 − 55λ− 84).
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For n = 9, we have

A(CD18) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then charpoly(A(CD18)) = λ15(λ3 − 89λ− 144).

Conjecture 3.1. If n is odd then

charpoly(A(CD2n
)) = λ2n−3(λ3 − (n2 + n− 1)λ− 2n(n− 1)).

The cubic equations in the characteristics polynomials are a bit difficult to solve so spectrums

are not determined at this moment.

Case 2: n is even

We consider the following two sub-cases.

Sub-case 2.1: n = 2k for some positive integer k

In this case, CD
2k+1

becomes a star graph with 2k+1 vertices. Therefore,

charpoly(A(CD
2k+1

)) = λ2k+1−2(λ2 − 2k+1 + 1).

Hence

Spec(CD
2k+1

) = {(
√
2k+1 − 1)1, 02

k+1−2, (−
√
2k+1 − 1)1}.

Subcase 2.2: n = 2kpr11 pr22 ...prnn , where pi is prime and ri is a non-negative integer for every

i ∈ {1, 2, ..., n}
For n = 6 we have
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A(CD12
) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 1 1 1 1 1 1 1

0 1 0 1 0 1 0 0 0 0 0 0

0 0 1 0 0 1 1 1 1 1 1 1

0 0 0 0 0 1 0 0 0 0 0 0

1 1 1 1 1 0 1 1 1 1 1 1

0 1 0 1 0 1 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then charpoly(A(CD12)) = λ8(λ+ 2)(λ3 − 2λ2 − 21λ+ 14).

For n = 10, we have

A(CD20) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then charpoly(A(CD20)) = (λ− 1)16(λ4 − 63λ2 − 88λ+ 176).
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For n = 12, we have

A(CD24) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then charpoly(A(CD24
)) = (λ− 1)20(λ4 − 53λ2 − 60λ+ 180).

Since cubic and quartic equations appear in the characteristics polynomials which seem difficult

to solve so spectrums cannot be determined at this stage. Due to dissimilar behaviour of the

characteristics polynomials we cannot predict them in general.

4 Computing characteristics polynomial of L(CD2n)

In this section we compute characteristics polynomial and laplacian spectrum(if possible) of lapla-

cian matrices of CD2n denoted by charpoly(L(CD2n)) and Λ − spec(CD2n) respectively for different

forms of n.

We consider the following three cases.

Case 1: n is odd
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For n = 3, we have

L(CD6) =

⎡⎢⎢⎢⎢⎢⎢⎣
4 0 −1 −1 −1 −1
0 4 −1 −1 −1 −1
−1 −1 5 −1 −1 −1
−1 −1 −1 3 0 0

−1 −1 −1 0 3 0

−1 −1 −1 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then charpoly(L(CD6)) = λ(λ− 3)2(λ− 4)(λ− 6)2. Therefore

Λ− spec(CD6
) = {0, 32, 41, 62}.

For n = 5, we have

L(CD10) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 0 0 0 −1 −1 −1 −1 −1 −1
0 6 0 0 −1 −1 −1 −1 −1 −1
0 0 6 0 −1 −1 −1 −1 −1 −1
0 0 0 6 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 9 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 5 0 0 0 0

−1 −1 −1 −1 −1 0 5 0 0 0

−1 −1 −1 −1 −1 0 0 5 0 0

−1 −1 −1 −1 −1 0 0 0 5 0

−1 −1 −1 −1 −1 0 0 0 0 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then charpoly(L(CD10
)) = λ(λ− 5)4(λ− 6)3(λ− 10)2. Therefore

Λ− spec(CD10
) = {0, 54, 63, 102}.

For n = 7, we have

L(CD14) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1
0 8 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1
0 0 8 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1
0 0 0 8 0 0 −1 −1 −1 −1 −1 −1 −1 −1
0 0 0 0 8 0 −1 −1 −1 −1 −1 −1 −1 −1
0 0 0 0 0 8 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 13 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 7 0 0 0 0 0 0

−1 −1 −1 −1 −1 −1 −1 0 7 0 0 0 0 0

−1 −1 −1 −1 −1 −1 −1 0 0 7 0 0 0 0

−1 −1 −1 −1 −1 −1 −1 0 0 0 7 0 0 0

−1 −1 −1 −1 −1 −1 −1 0 0 0 0 7 0 0

−1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 7 0

−1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then charpoly(L(CD14
)) = λ(λ− 7)6(λ− 8)5(λ− 14)2. Therefore

Λ− spec(CD14) = {0, 76, 85, 142}.
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For n = 9, we have

L(CD18) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
0 10 0 0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
0 0 10 0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
0 0 0 10 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
0 0 0 0 10 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
0 0 0 0 0 10 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
0 0 0 0 0 0 10 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
0 0 0 0 0 0 0 10 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1 17 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 9 0 0 0 0 0 0 0 0
−1 −1 −1 −1 −1 −1 −1 −1 −1 0 9 0 0 0 0 0 0 0
−1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 9 0 0 0 0 0 0
−1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 9 0 0 0 0 0
−1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 9 0 0 0 0
−1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 9 0 0 0
−1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 9 0 0
−1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 9 0
−1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then charpoly(L(CD18)) = λ(λ− 9)8(λ− 10)7(λ− 18)2. Therefore

Λ− spec(CD18) = {0, 98, 107, 182}.

Conjecture 4.1. If n is odd then

charpoly(L(CD2n)) = λ(λ− n)n−1(λ− (n+ 1))n−2(λ− 2n).

Therefore
Λ− spec(CD2n

) = {0, nn−1, (n+ 1)n−2, 2n}.

Case 2: n is even

We consider the following two subcases.

Subcase 2.1: n = 2k for some positive integer k
For n = 4, we have

L(CD8) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 0 0 0

0 1 0 −1 0 0 0 0

0 0 1 −1 0 0 0 0

−1 −1 −1 7 −1 −1 −1 −1
0 0 0 −1 1 0 0 0

0 0 0 −1 0 1 0 0

0 0 0 −1 0 0 1 0

0 0 0 −1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore, charpoly(L(CD8)) = λ(λ− 1)6(λ− 8). Hence,

Λ− spec(CD8) = {0, 16, 8}.
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For n = 8, we have

L(CD16
) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0

−1 −1 −1 −1 −1 −1 −1 15 −1 −1 −1 −1 −1 −1 −1 −1
0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore, charpoly(L(CD16
)) = λ(λ− 1)14(λ− 16). Hence,

Λ− spec(CD16
) = {0, 114, 16}.

For n = 16, we have charpoly(L(CD32)) = λ(λ− 1)30(λ− 32). Hence,

Λ− spec(CD32
) = {0, 130, 32}.

Conjecture 4.2. If n = 2k then

charpoly(L(CD
2k+1

)) = λ(λ− 1)2
k+1−2(λ− 2k+1).

Therefore,

Λ− spec(CD
2k+1

) = {0, 12k+1−2, 2k+1}.
Subcase 2.2: n = 2kpr11 pr22 ...prnn , where pi is prime and ri is a non-negative integer for every

i ∈ {1, 2, ..., n}
For n = 6 we have

LCD12) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −1 0 0 0 0 0 0

0 8 −1 0 0 −1 −1 −1 −1 −1 −1 −1
0 −1 3 −1 0 −1 0 0 0 0 0 0

0 0 −1 8 0 −1 −1 −1 −1 −1 −1 −1
0 0 0 0 1 −1 0 0 0 0 0 0

−1 −1 −1 −1 −1 11 −1 −1 −1 −1 −1 −1
0 −1 0 −1 0 −1 3 0 0 0 0 0

0 −1 0 −1 0 −1 0 3 0 0 0 0

0 −1 0 −1 0 −1 0 0 3 0 0 0

0 −1 0 −1 0 −1 0 0 0 3 0 0

0 −1 0 −1 0 −1 0 0 0 0 3 0

0 −1 0 −1 0 −1 0 0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Then charpoly(L(CD12)) = λ(λ− 1)2(λ− 3)6(λ− 8)(λ− 10)(λ− 12). Therefore

Λ− spec(CD12) = {0, 12, 36, 8, 10, 12}.

For n = 10, we have

charpoly(L(CD20)) = λ2(λ− 1)2(λ− 5)10(λ− 12)2(λ− 20)(λ3 − 17λ2 + 16λ+ 132).

It is a cubic equation which is bit difficult to solve at this stage so we are unable to compute the

laplacian spectrums.

In this case due to dissimilar behaviour of the characteristics polynomials we cannot predict them

in general.

5 Computing characteristics polynomial of Q(CD2n)

In this section we compute characteristics polynomial and signless laplacian spectrum(if possible)

of signless laplacian matrices of CD2n denoted by charpoly(Q(CD2n)) and Q-Spec(CD2n) respectively

for different forms of n.

We consider the following three cases.

Case 1: n is odd

For n = 3, we have

Q(CD6) =

⎡⎢⎢⎢⎢⎢⎢⎣
4 0 1 1 1 1

0 4 1 1 1 1

1 1 5 1 1 1

1 1 1 3 0 0

1 1 1 0 3 0

1 1 1 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then charpoly(Q(CD6
)) = (λ− 4)(λ− 3)2(λ3 − 12λ2 + 36λ− 24).

For n = 5, we have

Q(CD10) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 0 0 0 1 1 1 1 1 1

0 6 0 0 1 1 1 1 1 1

0 0 6 0 1 1 1 1 1 1

0 0 0 6 1 1 1 1 1 1

1 1 1 1 9 1 1 1 1 1

1 1 1 1 1 5 0 0 0 0

1 1 1 1 1 0 5 0 0 0

1 1 1 1 1 0 0 5 0 0

1 1 1 1 1 0 0 0 5 0

1 1 1 1 1 0 0 0 0 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then charpoly(Q(CD10)) = (λ− 6)3(λ− 5)4(λ3 − 20λ2 + 100λ− 80).

For n = 7, we have
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Q(CD14) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 0 0 0 0 0 1 1 1 1 1 1 1 1

0 8 0 0 0 0 1 1 1 1 1 1 1 1

0 0 8 0 0 0 1 1 1 1 1 1 1 1

0 0 0 8 0 0 1 1 1 1 1 1 1 1

0 0 0 0 8 0 1 1 1 1 1 1 1 1

0 0 0 0 0 8 1 1 1 1 1 1 1 1

1 1 1 1 1 1 13 1 1 1 1 1 1 1

1 1 1 1 1 1 1 7 0 0 0 0 0 0

1 1 1 1 1 1 1 0 7 0 0 0 0 0

1 1 1 1 1 1 1 0 0 7 0 0 0 0

1 1 1 1 1 1 1 0 0 0 7 0 0 0

1 1 1 1 1 1 1 0 0 0 0 7 0 0

1 1 1 1 1 1 1 0 0 0 0 0 7 0

1 1 1 1 1 1 1 0 0 0 0 0 0 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then charpoly(Q(CD14
)) = (λ− 8)5(λ− 7)6(λ3 − 28λ2 + 196λ− 168).

For n = 9, we have

Q(CD18) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 10 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 10 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 10 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 10 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 10 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 10 0 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 10 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 17 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 9 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 9 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 9 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 9 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 9 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 9 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 9 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 9 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then charpoly(Q(CD18
)) = (λ− 10)7(λ− 9)8(λ3 − 36λ2 + 324λ− 288).

Conjecture 5.1. If n is odd then

charpoly(Q(CD2n
)) = (λ− n− 1)n−2(λ− n)n−1(λ3 − 4nλ2 + 2n(n+ 1)λ− 4n(n− 1)).

As we can observed that the characteristics polynomials contain cubic equations which are very

complicated to rationalise thus signless laplacian spectrums are not computed at this level.

Case 2: n is even
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We consider the following two subcases.

Subcase 2.1: n = 2k for some positive integer k
For n = 4, we have

Q(CD8) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0

1 1 1 7 1 1 1 1

0 0 0 1 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 1 0 0 1 0

0 0 0 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore, charpoly(Q(CD8)) = λ(λ− 1)6(λ− 8). Hence,

Q-Spec(CD8) = {0, 16, 8}.

For n = 8, we have

Q(CD16
) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 15 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Therefore, charpoly(Q(CD16)) = λ(λ− 1)14(λ− 16). Hence,

Q-Spec(CD16) = {0, 114, 16}.

For n = 16, we have charpoly(Q(CD32
)) = λ(λ− 1)30(λ− 32). Hence,

Q-Spec(CD32) = {0, 130, 32}.

Conjecture 5.2. If n = 2k then

charpoly(Q(CD
2k+1

)) = λ(λ− 1)2
k+1−2(λ− 2k+1).

Therefore,

Q-Spec(CD
2k+1

) = {0, 12k+1−2, 2k+1}.
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Subcase 2.2: n = 2kpr11 pr22 ...prnn , where pi is prime and ri is a non-negative integer for every

i ∈ {1, 2, ..., n}
For n = 6 we have

Q(CD12) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 0 0 0 0 0 0

0 8 1 0 0 1 1 1 1 1 1 1

0 1 3 1 0 1 0 0 0 0 0 0

0 0 1 8 0 1 1 1 1 1 1 1

0 0 0 0 1 1 0 0 0 0 0 0

1 1 1 1 1 11 1 1 1 1 1 1

0 1 0 1 0 1 3 0 0 0 0 0

0 1 0 1 0 1 0 3 0 0 0 0

0 1 0 1 0 1 0 0 3 0 0 0

0 1 0 1 0 1 0 0 0 3 0 0

0 1 0 1 0 1 0 0 0 0 3 0

0 1 0 1 0 1 0 0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then charpoly(Q(CD12
)) = (λ− 1)2(λ− 3)6(λ− 8)(λ3 − 22λ2 + 120λ− 56).

For n = 10, we have

Q(CD20) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 12 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 12 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 5 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 12 0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 12 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 19 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 5 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 5 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 0 5 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 0 0 5 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 0 0 0 5 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 5 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 5 0 0 0

0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 5 0 0

0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 5 0

0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then charpoly(Q(CD20
)) = (λ−1)2(λ−5)10(λ−12)2(λ6−37λ5+356λ4−364λ3−2222λ2+2926λ−

264).

For n = 12, we have
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Q(CD24) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 3 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 16 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 3 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 16 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 0 0 0 1 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 23 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 0 0 0 1 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 3 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 3 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 3 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then charpoly(Q(CD24
)) = (λ− 1)6(λ− 3)14(λ− 16)(λ3 − 42λ2 + 432λ− 120).

For n = 14, we have

charpoly(Q(CD28)) = (λ− 1)6(λ− 7)14(λ− 16)5(λ3 − 50λ2 + 616λ− 360).

We have come across higher degree equations which are bit difficult to solve at this stage so we

are unable to compute the signless laplacian spectrums and also due to dissimilar behaviour of the

characteristics polynomials we cannot predict in general.

6 Conclusion

In this chapter we have studied the coprime graphs of finite groups and then we have particularly

discussed the coprime graphs of dihedral groups. These classes of graphs are relatively new in

the theory of finite groups. Therefore further research on the algebraic structures of these graphs

can be carried out. Note that X. Ma, H. Wei and L. Yang have derived the concept of coprime

graphs of finite groups and we have observed that very few results concerning the coprime graphs

of dihedral groups are provided by them. Going through them we have tried to determine the

characteristics polynomials and spectrums of the adjacency matrices, laplacian matrices, signless

laplacian matrices of the coprime graphs of dihedral groups. To some extent we are successful in

the cases when n is odd and n = 2k for some positive integer k. But whenever n = 2kpr11 pr22 ...prnn ,
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where pi is prime for every 1 ≤ i ≤ n and ri is a non-negative integer for every 1 ≤ i ≤ n we have

seen large variations in their characteristics polynomials so we posed there.
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acteristics polynomials of higher order matrices.
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Abstract. The commuting graph is a graph associtaed with the group. Commuting graph of a

non-abelian group is defined as a simple graph in which the vertices are the non-central elements

of the group, and two distinct vertices are adjacent if and only if they commute. In this article, it

is discussed about (up to isomorphism) all finite non-abelian groups whose commuting graphs are

acyclic, planar or toroidal. it is also discussed the explicit formulas for the genus of the commuting

graphs of some well-known class of finite non-abelian groups, and it is shown that, every collection

of isomorphism classes of finite non-abelian groups whose commuting graphs have the same genus

is finite.
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1 Introduction

This chapter is mainly focused on the graph which can be obtained from a non commuting group.

There are so many graphs associated with the group, viz. commuting graph, non commuting graph,

nilpotent graph, non nilpotent graph, prime graph, commuting conjugacy class graph, nilpotent

conjugacy class graph. From the name of these graph we can predict that somehow these graphs

are mostly related to the abelian group, nilpotent group, conjugacy classes of commuting group,

conjugacy classes of nilpotent group etc. Here we associate the groups with the graph, for example;

to define the Commuting or non-commuting graph, we take those groups which are not abelian

and similarly for the other graphs also. To study the graph we basically study the property like

connectedness, girth, independent number, domination number, genus. The reader may refer to

[25] and [18] for various standard graph theoretic terminologies.

Let G be a non-abelian group and Z(G) be its center. The commuting graph of G, denoted by

Γc(G), is a simple undirected graph in which the vertex set is G \Z(G), and two distinct vertices x
and y are adjacent if and only if xy = yx. The reason to exclude the central element while defining

the graph is very obvious, because the central element will give us a complete block, and give a

41
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complete bipartite with the rest of the element. This graph is precisely the complement of the non-

commuting graph of a group considered in [1] and [2]. However, the ever-increasing popularity of

the topic is often attributed to a question, posed in 1975 by Paul Erdos and answered afirmatively

by B. H. Neumann [19], asking whether or not a non-commuting graph having no infinite complete

subgraph possesses a finite bound on the cardinality of its complete subgraphs. In recent years,

the commuting graphs of groups have become a topic of research for many mathematicians (see,

for example, [4], ). In [5], it was conjectured that the commuting graph of a finite group is either

disconnected or has diameter bounded above by a constant independent of the group G. This

conjecture was well-supported in [6] and [7]. However, in [8], it is shown that, for all positive

integers d, there exists a finite special 2-group G such that the commuting graph of G has diameter

greater than d. But in [9], it is proved that for finite groups with trivial center the conjecture

made in [5] holds good. The concept of commuting graphs of groups (taking, as the vertices, the

non-trivial elements of the group in place of non-central elements) has also been recently used in

[10] to show that finite quotients of the multiplicative group of a finite dimensional division algebra

are solvable. There is also a ring theoretic version of commuting graphs (see, for example, [1], [11]).

Most of the works cited above on the commuting graphs of groups deal with connectedness,

diameter and some algebraic aspects of the graph. Also, we deal with a topological aspect, namely,

the genus of the commuting graphs of finite non-abelian groups, and on this concern the commuting

and the non-commuting graphs are independent of each other. Here it is shown that every collection

of isomorphism classes of finite non-abelian groups whose commuting graphs have the same genus

is finite. The motivation for this survey comes from [12], [13], [14] and [15], where similar problems

for certain graphs associated to finite rings have been addressed.

Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). Let x, y ∈ V (Γ). Then x and y are

said to be adjacent if x �= y and there is an edge x � y in E(Γ) joining x and y. A path between x
and y is a sequence of adjacent vertices, often written as x � x1 � x2 � · · ·� xn � y, where
the vertices x, x1, x2, · · ·xn, y are all distinct (except, possibly, x and y). Γ is said to be connected

if there is a path between every pair of distinct vertices in Γ. A path between x and y is called a

cycle if x = y. The number of edges in a path or a cycle, is called its length. A cycle of length n
is called an n-cycle, and a 3-cycle is also called a triangle. The girth of Γ is the minimum of the

lengths of all cycles in Γ, and is denoted by girth(Γ). If Γ is acyclic, that is, if Γ has no cycles, then

we write girth(Γ) =∞.

A graph G is said to be complete if there is an edge between every pair of distinct vertices in G.

We denote the complete graph with n vertices by Kn. A bipartite graph is the one whose vertex

set can be partitioned into two disjoint parts in such a way that the two end vertices of every edge

lie in different parts. Among the bipartite graphs, the complete bipartite graph is the one in which

two distinct vertices are adjacent if and only if they lie in different parts. The complete bipartite

graph, with parts of size m and n, is denoted by Km,n.

A subset of the vertex set of a graph Γ is called a clique of Γ if it consists entirely of pairwise

adjacent vertices. The least upper bound of the sizes of all the cliques of G is called the clique

number of Γ, and is denoted by ω(Γ). The chromatic number of a graph Γ, written χ(Γ), is the

minimum number of colors needed to label the vertices so that adjacent vertices receive different

colors. Clearly, ω(Γ) ≤ χ(Γ). Given a graph Γ, let U be a nonempty subset of V (Γ). Then the

induced subgraph of Γ on U is defined to be the graph Γ[U ] in which the vertex set is U and the

edge set consists precisely of those edges in Γ whose endpoints lie in U .

We start with a conjecture given below.

Conjecture 1.1. Let G and H be two non-abelian finite groups such that Γc(G) ∼= Γc(H). Then
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G ∼= H.

2 Genus of γ(Γc(G))

The genus of a graph Γ, denoted by γ(Γ), is the smallest non-negative integer g such that the graph

can be embedded on the surface obtained by attaching g handles to a sphere. Clearly, if Γ̃ is a

subgraph of Γ then γ(Γ̃) ≤ γ(Γ). Graphs having genus zero are called planar graphs, while those

having genus one are called toroidal graphs. Graphs having genus two are called double-toroidal
graphs and those having genus three are called triple-toroidal graph. It is well-known (see [24,

Theorem 6-39]) that γ(Kn) =
⌈
(n−3)(n−4)

12

⌉
, where n ≥ 3 and Kn is the complete graph on n

vertices. Also, if m,n ≥ 2 then

γ(Km,n) =

⌈
(m− 2)(n− 2)

4

⌉
and γ(Km,m,m) =

(m− 2)(m− 1)

2
,

where Km,n, Km,m,m are complete bipartite and tripartite graphs respectively.

Lemma 2.1. [21] If a graph Γ has two disjoint subgraphs Γ1 and Γ2 such that Γ1 = Km and
Γ2 = Kn for some positive integers m and n, then γ(Γ) ≥ γ(Γ1) + γ(Γ2).

The above lemma is very usefull to find the bound of the genus, Since it is not possible always

to find the genus by exactly knowing the graph, hence we can find the bound by using the above

results.

Proposition 2.2. [20] Let G be a non-abelian group. Then, Γc(G) has no 3-cycle if and only if G
is isomorphic to the symmetric group S3, the quaternion group Q8, or the dihedral group D8.

Lemma 2.3. [20] Let G be a finite non-solvable group such that γ(Γc(G)) = m.

1. If S is a nonempty subset of G \ Z(G) such that xy = yx for all x, y ∈ S, then |S| ≤⌊
7+

√
1+48m
2

⌋
.

2. |Z(G)| ≤ 1
t−1

⌊
7+

√
1+48m
2

⌋
, where t = max{o(xZ(G)) | xZ(G) ∈ G/Z(G)}.

3. If H is a abelian subgroup of G, then |H| ≤
⌊
7+

√
1+48m
2

⌋
+ |H ∩ Z(G)|.

Theorem 2.4. [20] The order of a finite non-abelian group is bounded by a function of the genus
of its commuting graph. Consequently, given a non-negative integer g, there are at the most finitely
many (up to isomorphism) finite non-abelian groups whose commuting graphs have genus g.

A group is said to be an AC-group if the centralizer of each of its non-central elements is abelian.

We have some result id the AC group. The clear example of this typs of groups are D2n = 〈x, y|yn =

x2 = 1, xyx−1 = y−1〉, Q4n = 〈x, y|y2n = 1, x2 = yn, xyx−1 = y−1〉, γ(Γc(PSL(2, 2k))) = (2k +

1)γ(K2k−1) + 2k−1(2k + 1)γ(K2k−2) + 2k−1(2k − 1)γ(K2k). The AC-groups have been extensively

studied by many authors (see for example [1], [16]).

Proposition 2.5. [20] Let G be a finite non- abelian AC − group. Then
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γ(Γc(G)) = ΣX∈℘γ(K|X|),

where ℘ = {CG(u) \ Z(G)|u ∈ G \ Z(G)}.

Remark 2.6. [20] If G is a finite non-abelian AC − group and A is a finite abelian group, then
A×G is also a finite non-abelian AC − group with CA×G(a, u) \ Z(A×G) = A× (CG(u) \ Z(G))

for all (a, u) ∈ (A×G) \ Z(A×G). Therefore, it follows from previous Proposition that

γ(Γc(A×G)) = ΣX∈℘γ(K|A||X|),

where ℘ = {CG(u) \ Z(G)|u ∈ G \ Z(G)}.

Corollary 2.7. [20] The genus of the commuting graph of a non-abelian group G of order pq, where
p and q are primes with p|q − 1, is given by

γ(Γc(G)) = γ(Kq−1) + qγ(Kp−1).

The genus of the commuting graphs of some well known finite non-abelian AC − groups are

detremined here. Some of the results obtained here play crucial role in the study of planarity and

toroidality of the commuting graphs of finite nonabelian groups.

Corollary 2.8. [20] The genus of the commuting graph of a non-abelian group G of order p3, where
p is a prime, is given by

γ(Γc(G)) = (p+ 1)γ(Kp(p−1)).

Proposition 2.9. [20] The genus of the commuting graph of the dihedral group D2n = 〈x, y|yn =

x2 = 1, xyx−1 = y−1〉, where n ≥ 3, is given by

γ(Γc(D2n)) =

{
γ(Kn−2) if n is even,
γ(Kn−1) if n is odd.

Proposition 2.10. [20] The genus of the commuting graph of the dicyclic group or the generalized
quaternion group Q4n = 〈x, y|y2n = 1, x2 = yn, xyx−1 = y−1〉, where n ≥ 2, is given by

γ(Γc(Q4n)) = γ(K2(n−1)).

Proposition 2.11. [20] The genus of the commuting graph of the semidihedral group SD2n =

〈r, s|r2n−1

= s2 = 1, srs = r2
n−2−1〉 where n ≥ 4, is given by

γ(Γc(SD2n)) = γ(K2n−1−2).

Proposition 2.12. [20] The genus of the commuting graph of the projective special linear group
PSL(2, 2k), where k ≥ 2, is given by

γ(Γc(PSL(2, 2k))) = (2k + 1)γ(K2k−1) + 2k−1(2k + 1)γ(K2k−2) + 2k−1(2k − 1)γ(K2k).

Proposition 2.13. [20] The genus of the commuting graph of the general linear group GL(2, q),
where q = pn > 2 (p is a prime), is given by

γ(Γc(GL(2, q))) = q(q+1)
2 γ(K(q−1)(q−2)) +

q(q−1)
2 γ(Kq(q−1)) + (q + 1)γ(K(q−1)2).
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In view of Remark 2.6 and the results obtained, one can easily compute the genus of the

commuting graph of the group A × G, where A is a finite abelian group and G is any one of

the groups considered in the Propositions 2.9 to 2.13. We characterize all finite non-abelian groups

whose commuting graphs are planar. However, we have the following lemma containing a couple of

elementary properties of finite 2-groups.

Lemma 2.14. [20] Let G be a finite 2-group. Then, the following assertions hold:

1. If |G| ≥ 16, then G contains an abelian subgroup of order 8.

2. If |G| ≥ 32 and |Z(G)| ≥ 4, then G contains an abelian subgroup of order 16.

Our next lemma of this section provides some useful information regarding the size of G and its

abelian subgroups.

Lemma 2.15. [20] Let G be a finite non-abelian group whose commuting graph is planar. Then
the following assertions hold:

1. If p is a prime divisor of |G|, then p ≤ 5.

2. Neither 9 nor 25 divides |G|, and hence, |G| is even with |G| ≥ 6.

Given a finite non-abelian group G, whose commuting graph is planar, it follows from Lemma

2.15 that |G| = 2r3s5t, where r ≥ 1 and s, t ∈ {0, 1}. However, depending on the values of |Z(G)|,
the range of possible values of |G| gets reduced further.

Lemma 2.16. [20] Let G be a finite non-abelian group whose commuting graph is planar. Then
the possible values of |G| are given as follows:

1. If |Z(G)| = 1, then |G| = 2r3s5t, where 1 ≤ r ≤ 3 and s, t ∈ {0, 1}.

2. If |Z(G)| = 2, then |G| ∈ {8, 12, 24}.

3. If |Z(G)| = 4, then |G| = 16.

4. |Z(G)| �= 3.

Note that some of the possibilities mentioned in Lemma 2.16 are not maintainable: for example,

in (1), it is obviously not possible to have s = t = 0. In fact, the following small result helps us in

avoiding few more finite groups as far as the planarity of their commuting graphs is concerned.

Lemma 2.17. [20] Let G be a finite non-abelian group. If |G| = 30, or if G is a solvable group
with |G| = 60 or 120, then G has an subgroup of order 15 (which is obviously abelian). Also, if
|G| = 40, then G has an abelian subgroup of order 10.

In view of Lemma 2.3(3) and Lemma 2.16, it follows from Lemma 2.17 that if G is a finite non-

abelian group whose commuting graph is planar, then |G| /∈ {30, 40}; in addition, if G is solvable,

then |G| /∈ {60, 120}. We also have the following useful result concerning the groups of order 16.

Lemma 2.18. [20] Let G be a finite non-abelian group with |Z(G)| = 4. Then, the commuting
graph of G is planar if and only if |G| = 16.
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Remark 2.19. [20] Up to isomorphism, there are exactly six non-abelian groups of order 16 with
centers of order 4, namely, the two direct products Z2×D8 and Z2×Q8, the Small Group SG(16, 3) =
〈a, b|a4 = b4 = 1, ab = b−1a−1, ab−1 = ba−1〉, the semi-direct product Z4 × Z4 = 〈a, b|a4 = b4 =

1, bab−1 = a−1〉, the central product D8×Z4 = 〈a, b, c|a4 = b2 = c2 = 1, ab = ba, ac = ca, bc = a2cb〉
and the modular group M16 = 〈a, b|a8 = b2 = 1, bab = a5〉.

We now state the main result, where two new groups make their appearance, namely, the Suzuki

group Sz(2) = 〈a, b|a5 = b4 = 1, bab−1 = a2〉, and the special linear group SL(2, 3) = 〈a, b, c|a3 =

b3 = c2 = abc〉.

Theorem 2.20. [20] Let G be a finite non-abelian group. Then, the commuting graph of G is planar
if and only if G is isomorphic to either S3, D10, A4, Sz(2), S4, A5, D8, Q8, D12, Q12, SL(2, 3),Z2 ×
D8,Z2 ×Q8, SG(16, 3),Z4 × Z4, D8 × Z4 or M16.

We characterize all finite non-abelian groups whose commuting graphs are toroidal. The follow-

ing result is analogous to Lemma 2.15.

Lemma 2.21. [20] Let G be a finite non-abelain group whose commuting graph is toroidal. Then,
the following assertions hold:

1. |Z(G)| ≤ 3.

2. If p is a prime divisor of |G|, then p ≤ 7.

3. None of 25, 27 and 49 is a divisor of |G|.

Analogous to Lemma 2.15, we have the following result concerning the groups of order 16.

Lemma 2.22. [20] Let G be a finite non-abelian 2-group with |Z(G)| = 2. Then, the commuting
graph of G is toroidal if and only if |G| = 16, that is, if and only if G is isomorphic to either
D16, Q16 or SD16.

We also have the following result concerning the finite groups that are not 2-groups.

Lemma 2.23. [20] Let G be a finite non-abelian group with |G| = 2rm, where r ≥ 0, m > 1 and
m is odd. If the commuting graph of G is toroidal, then r ≤ 3.

If G is a finite non-abelian group whose commuting graph is toroidal, then it follows from Lemma

2.21 that |G| = 2r3s5t7u, where r ≥ 0, 0 ≤ s ≤ 2 and t, u ∈ {0, 1}. However, as in Lemma 2.16, the

range of possible values of |G| gets reduced further depending on the values of |Z(G)|.

Lemma 2.24. [20] Let G be a finite non-abelian group whose commuting graph is toroidal. Then
the possible values of |G| are given as follows:

1. If |Z(G)| = 1, then |G| = 2r3s5t7u where 0 ≤ r ≤ 3 and s, t, u ∈ {0, 1}.

2. If |Z(G)| = 2, then |G| ∈ {16, 24}.

3. If |Z(G)| = 3, then |G| = 18.
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Needless to mention that some of the possibilities mentioned in Lemma 2.24 are clearly not

maintainable; for example, in (1), it is impossible to have s = t = u = 0, r = u = 0 or r = s = 0.

Moreover, in view of Lemma 2.3(3) and Lemma 2.24, it follows from Lemma 2.17 that if G is a

finite non-abelian group whose commuting graph is toroidal, then |G| /∈ {30, 40}; in addition, if G
is solvable, then |G| /∈ {60, 120}. The following result, along with Lemma 2.17, helps us in rejecting

some more possibilities.

Lemma 2.25. [20] Let G be a finite non-abelian group whose commuting graph is toroidal. If
|G| = 7m, where m ≥ 2 and 7 � m, then m = 2 or 3.

We now state the main result of finite non-abelian groups whose commuting graphs are toroidal.

Theorem 2.26. [20] Let G be a finite non-abelian group. Then, the commuting graph of G is
toroidal if and only if G is isomorphic to either D14,Z7 × Z3,Z2 ×A4,Z3 × S3, D16, Q16 or SD16.
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1 Introduction

Ring theory is a board area of mathematics, in the study of ring usually one associate some property

P to the elements of the ring, then study the class of ring with or without the property the P, e.g.

of P : commutative under multiplication.

Throughout this survey unless or otherwise explicitly stated R will denote an associative ring

with unity. We will use the symbols vnr(R),Nil(R),U(R) and Idem(R) respectively to denote the

set of all Von Neumann regular elements, nilpotent elements, units and idempotents of R. Also

J(R) will denote the Jacobson radical of R.

In 1936, Von Neumann defined that an element defined that an element a ∈ R is regular or Von

Neumann regular if a = aba for some b ∈ R. Similarly an element a ∈ R is called unit regular if

a = aua for some u ∈ U(R) or equivalently a = eu for some e ∈ Idem(R) and u ∈ U(R). In 1939,

McCoy generalized Von Neumann regular rings to π-regular rings, a ring in which for each element

a ∈ R its some positive integral power is Von Neumann regular i.e., for each a ∈ R there exists an

element x and a positive integer n such that an = anxan. R is π-regular if all its elements are so.

Again an element a ∈ R is said to be strongly π-regular if there exists an element x and a positive

integer such that an = an+1x (Azumaya called such an element right π-regular and similarly he

defined left π-regular, further he called an element strongly π-regular if it is both left and right

π-regular). Later on F. Dischinger showed that this definition is right and left symmetric. R is

strongly π-regular if all its elements are so. In 1977, W.K. Nicholson [10], introduced the notion of

clean element, element that can be expressed as a sum of an idempotent and a unit.

49
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Clearly the concept of clean element is an additive analogue of unit regular element. A ring is

called a clean ring if each of its element is clean. A ring R is called strongly clean if every a ∈ R
can be expressed as a = e + u, where e ∈ Idem(R) and u ∈ U(R) with eu = ue. A.J. Diesl [6] in

his Ph.D thesis introduced the concept of nil clean rings, which is a ring in which every element of

R can be expressed as a sum of an element of Idem(R) and an element of Nil(R). It is easy to see

that a nil clean ring is always a clean ring and of course the converse is not true.

As nil clean rings is a sub class of clean rings we started reading about properties of clean

rings. Very often, a ring-theoretic property of an element f in a ring S give rise to an interesting

description in the case when S is realized as the ring of endomorphisms of some module MR.

To study the connection between the above mention class of rings, we go through paper [3]

where ring elements are treated as endomorphism of some module.

Lemma 1.1. Let S = End(MR) and f, e ∈ S, where e is an idempotent with A =Ker(e) and
B =Im(e). Then f − e ∈ U(S) if and only if there exists an R−module decomposition M = C ⊕D
such that f(A) ⊆ C, (1− f)(B) ⊆ D and both f : A→ C and 1− f : B → D are isomorphisms.

Proof. First suppose that f = e + u for some unit u ∈ S. Put C = uA and D = uB. As

f(1 − e) = (e + u)(1 − e) = u(1 − e) and (1 − f)e = (e − f)e = −ue, Thus f : A → C and

1− f : B → D are isomorphisms.

Conversely, suppose there is a decomposition M = C⊕D such that f : A→ C and 1−f : B → D
are isomorphisms.Now the same equations as above show that u := f − e is an isomorphism from

A to C and from B to D. Thus, u ∈ U(S).

By rewriting above lemma we get definition of clean element in the ring End(MR).

Proposition 1.2. An element f ∈ End(MR) is clean if and only if there exist R−module decom-
positions M = A ⊕ B = C ⊕ D such that f(A) ⊆ C, (1 − f)(B) ⊆ D, and both f : A → C and
1− f : B → D are isomorphisms.

Such a decomposition of module M will be referred to as an ABAB decomposition for M . Can

be represented in diagram as follows.

M = A ⊕ B

f ↓� (f − 1) ↓�
M = C ⊕ D

Similarly we get condition for f ∈ End(MR) to be strongly clean as in the following proposition.

Proposition 1.3. An element f ∈ End(MR) is strongly clean if and only if there exist R−module
decompositions M = A ⊕ B such that f(A) ⊆ A, (1 − f)(B) ⊆ B, and both f : A → A and
1− f : B → B are isomorphisms.

ABAB decomposition is given by

M = A ⊕ B

f ↓� (1− f) ↓�
M = A ⊕ B
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In [12] Nicholson has given many characterization of strongly π−regular and strongly regular

element of End(MR), we take take following.

Proposition 1.4. Let R be a ring, and let MR be a right R-module.
1. An element f ∈ End(MR) is strongly π−regular if and only if there exists a direct sum de-
composition M = A ⊕ B such that A and B are f−invariant and such that f |A ∈ End(A) is an
isomorphism and f |B ∈ End(B) is nilpotent.

2. An element f ∈ End(MR) is strongly regular if and only if there exists a direct sum de-
composition M = A ⊕ B such that A and B are f−invariant and such that f |A ∈ End(A) is an
isomorphism and f |B ∈ End(B) is zero.

For rings, ring elements, as well as module endomorphisms, above Propositions show a clear

hierarchy of the following four notions:

strongly regular ⇒ strongly π−regular ⇒ strongly clean ⇒clean. · · · (i)

In his PhD thesis, Alexander James Diesl,[6] introduce similar type of characterization of

strongly nil clean element of End(MR).

Proposition 1.5. Let R be a ring, and let MR be a right R−module. An element f ∈ End(MR)

is called strongly nil clean if and only if there exists a direct sum decomposition M = A ⊕ B such
that A and B are f−invariant and such that f |A ∈ End(A) is nilpotent and (1− f)|B ∈ End(B) is
nilpotent.

From (i) and above we get following hierarchy:

strongly nil clean ⇒ strongly π−regular ⇒ strongly clean ⇒ clean.

Huanyin Chen [5] characterize the strongly nil cleanness of 2× 2 matrices over local rings. For

commutative local rings, he characterize strongly nil cleanness in terms of solvability of quadratic

equations. The strongly nil cleanness of a single triangular matrix was describe as well.

Huanyin Chen [4] characterize the strongly nil cleanness of matrices over projective-free rings

in terms of the factorizations of their characteristic polynomials.

Myung-Sook Ahn And D.D. Anderson [2] introduce weakly clean rings. A ring R is weakly clean

for a ∈ R, there exist some e ∈ Idem(R) and u ∈ U(R), such that if a = u+ e or u− e. And prove

that if R is weakly clean and Idem(R) = {0, 1} then R is not clean has exactly two maximal ideals

and 2 ∈ U(R).

2 Clean index of a ring.

As stated in the abstract this is a survey on various indexes related to clean/nil-clean rings, we

start with clean index of rings.

In [14, 15] Tsiu-Kwen Lee and Yiqiang Zhou introduced clean index of a ring. For a ∈ R, let

ξ(a) = { e ∈ R : e2 = e, a − e ∈ U(R) } where U(R) is the group of units of R and the clean
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index of R, denoted in(R), is defined by in(R) = sup{|ξ(a)| : a ∈ R }, and they characterize the

(arbitrary) rings of clean indices 1, 2, 3,...,7 and determine the abelian rings of finite clean index.

Here we state some of the important results.

BASIC PROPERTIES

Some basic properties related to clean index are:

Lemma 2.1. (Lemma 1. [14])
Let R be a ring and let e, a, b ∈ R. Then the following hold:

1. If e ∈ R is a central idempotent or a central nilpotent, then | ξ(e) |= 1, so in(R) ≥ 1.

2. If a− b ∈ J(R), then ξ(a) = ξ(b).

3. Let σ be an automorphism or anti-automorphism of R. Then e ∈ ξ(a) iff σ(e) ∈ ξ(σ(a); so
|ξ(a)| = |ξ(σ(a))|. In particular, |ξ(a)| = |ξ(uau−1) for each u ∈ U(R).

4. If a ring R has at most n units or at most n idempotents, then in(R) ≤ n. In particular, if R
is a local ring then in(R) ≤ 2.

5. If R is local, then in(R) ≤ 2 iff R/J(R) � Z2.

6. Let R be a clean ring with 2 ∈ U(R). Then in(R) = |ξ(2−1)|, which is the number of all
idempotents of R.

Lemma 2.2. (Lemma 2. [14])
If S is a subring of a ring R where S and R may or may not share the same identity, then
in(S) ≤ in(R).

Lemma 2.3. (Lemma 3. [14])
Let R = S × T be the direct product of two rings S and T. Then in(R) = in(S)in(T ).

CHARACTERIZATION OF RINGS WITH CLEAN INDICES

Following theorem characterize the rings of clean index 1. A ring is called abelian if each of its

idempotents is central.

Theorem 2.4. (Theorem 5. [14])
in(R) = 1, if and only if R is abelian and for any 0 �= e2 = e ∈ R, e �= u+v for non zero u, v ∈ U(R).

A ring R is called an elemental ring if the idempotents of R are trivial and 1R �= u+ v for some

u, v ∈ U(R). Examples of elemental rings include the rings R and R[x], where R is any local ring

with R/J(R) � Z2.

Theorem 2.5. in(R) = 2 iff one of the following holds:

1. R is an elemental ring.

2. R = A×B where A is an elemental ring and in(B) = 1).
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3. R =

(
A M
0 B

)
, where in(A) = in(B) = 1 and AMB is a bimodule with |M | = 2.

The abelian rings of finite clean index are determined in the next theorem. This result is also

useful to characterize the rings of clean index larger than 2.

Theorem 2.6. (Theorem 15. [14])
Let R be an abelian ring with in(R) <∞ and let k ≥ 1. The following statements hold:

1. in(R) = 2k iff either R = R1× · · · ×Rk or R = S ×R1× · · · ×Rk, where in(S) = 1 and each
Ri is an elemental ring.

2. p � in(R) for any odd prime p.

Theorem 2.7. (Lemma 19. [14])

Let A and B be rings and AMB a nontrivial bimodule. If R =

(
A M
0 B

)
is a formal triangular

matrix ring, then in(A) < in(R) and in(B) < in(R).

The rings of clean index 3 are determined by following result.

Theorem 2.8. (Theorem 24. [14])

in(R) = 3 iff R =

(
A M
0 B

)
, where in(A) = in(B) = 1 and AMB is a bimodule with |M | = 3.

Following results on clean indices are interesting and was used to derived in the characterization

of rings with clean index 4.

Theorem 2.9. (Lemma 4. [15])

Let R =

(
A M
0 B

)
, where A and B are rings, AMB is a bimodule. Let n = in(A) and m = in(B).

The following hold:

1. in(R) ≥ |M |.

2. If (M,+) ∼= Cpk , where p is a prime and k ≥ 1, then in(R) ≥ n + [n2 )(|M | − 1) where [n2 )

denotes the least integer greater than or equal to n/2;

3. Either in(R) ≥ nm+ |M | − 1, or in(R) ≥ 2nm.

Lemma 2.10. (Lemma 5. [15])

Let R =

(
A M
0 B

)
, where A and B are rings, AMB is a bimodule with (M,+) ∼= C2r . Then

in(R) = 2rin(A)in(B).

Formal triangular matrix ring with clean index 4, is caracterized in the followig result.

Theorem 2.11. (Proposition 6. [15])

Let R =

(
A M
0 B

)
, where A and B are rings, AMB is a non trivial bimodule. Then in(R) = 4

if and only if one of the following holds:
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1. (M,+) ∼= C2 and in(A)in(B) = 2.

2. (M,+) ∼= C4 and in(A) = in(B) = 1.

3. (M,+) ∼= C3 plus one of the following:

(a) A is an elemental ring and in(B) = 1;

(b) in(A) = 1 and B is an elemental ring;

(c) in(B) = 1, A = S × T where in(S) = 1 and T is an elemental ring, and SM = 0; so

R ∼= S ×
(

T M
0 B

)
.

(d) in(A) = 1, B = S × T where in(S) = 1 and T is an elemental ring, and TM = 0; so

R ∼=
(

A M
0 S

)
× T .

4. (M,+) ∼= C2 ⊕ C2 plus one of the following

(a) in(A) = in(B) = 1.

(b) in(A) = 1, B =

(
S W
0 T

)
, where in(S) = in(T ) = 1 and |W | = 2, and eM(1B −

f) + (1A − e)Mf �= 0, for all e2 = e ∈ A and f ∈ ξ(b), where b ∈ B with |ξ(b)| = 2.

(c) in(B) = 1, A =

(
S W
0 T

)
, where in(S) = in(T ) = 1 and |W | = 2, and eM(1B −

f) + (1A − e)Mf �= 0, for all e2 = e ∈ B and f ∈ ξ(a), where a ∈ A with |ξ(a)| = 2.

Full characterization of rings with clean index for is in the following theorem’

Theorem 2.12. (Theorem 8. [15])
Let R be a ring. Then in(R) = 4 iff one of the following holds:

1. R ∼= A×B where in(A) = in(B) = 2;

2. R is isomorphic to a formal triangular matrix ring of clean index 4 as given in Proposition

3. R =

(
A M
N B

)
, where in(A) = in(B) = 1, |M | = |N | = 2,MN ⊆ J(A), and NM ⊆ J(B);

4. R =

(
A M
N B

)
, where A =

(
S V
0 T

)
, with in(S) = in(T ) = 1, |V | = 2, in(B) = 1, |M | =

|N | = 2, and MN = 0 = NM . Moreover, for any e ∈ ξ(a) where a ∈ A with |ξ(a)| = 2 and
any f2 = f ∈ B, eM(1− f) + (1− e)Mf �= 0, or fN(1− e) + (1− f)Ne �= 0.

For characterization of rings with clean indices 5, 6, 7 readers can see [15].
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3 NIL CLEAN INDEX

In this section we survey the results of the notion of nil clean index of a ring and characterization

of arbitrary rings with nil clean index 1 and 2. Also few results for rings with indices 3 and 4 are

listed [11].

For an element a ∈ R, if a − e ∈ nil(R) for some e2 = e ∈ R, then a = e + (a − e) is called a

nil clean expression of a in R and a is called a nil clean element. The ring R is called nil clean if

each of its elements is nil clean. A ring R is uniquely nil clean if every element of R has a unique

nil clean expression in R. For an element a of R, we denote

η(a) = {e ∈ R | e2 = e and a− e ∈ nil(R)}

and nil clean index of R, denoted by Nin(R) is defined as

Nin(R) = sup{| η(a) |: a ∈ R}

where | η(a) | denotes the cardinality of the set η(a). Thus R is uniquely nil clean if and only if R
is a nil clean ring of nil clean index 1.

Elementary properties

Some basic properties related to nil clean index are presented here for the study on nil clean index

of ring. In this section we have reproduced few proofs which are bid interesting.

Lemma 3.1. Let R be a ring and let e, a, b ∈ R. Then the following hold:

1. If e ∈ R is a central idempotent or a central nilpotent, then | η(e) |= 1, so Nin(R) ≥ 1.

2. e ∈ η(a) iff 1− e ∈ η(1− a) and so | η(a) |=| η(1− a) | .

3. If f : R → R is a homomorphism, then e ∈ η(a) implies f(e) ∈ η(f(a)) and for the converse
f must be a monomorphism.

4. If a ring R has at most n idempotents or at most n nilpotent elements, then
Nin(R) ≤ n.

Lemma 3.2. If S is a subring of a ring R, where S and R may or may not share the same identity,
then Nin(S) ≤ Nin(R).

Lemma 3.3. Let R = S × T be the direct product of two rings S and T. Then Nin(R) =

Nin(S)Nin(T ).

Proof. Since S and T are subrings of R, so

Nin(S) ≤ Nin(R) and Nin(T ) ≤ Nin(R).

If Nin(S) =∞ or Nin(T ) =∞, then Nin(R) =∞ and hence, Nin(R) = Nin(S)Nin(T ) holds. Now
let

Nin(S) = n <∞ and Nin(T ) = m <∞.
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As n, m ≥ 1 and there exist elements s ∈ S and t ∈ T, such that

| ηS(s) |= n and | ηT (t) |= m.

Thus s = ei + ni, for i = 1, 2, . . . , n and t = fj + mj for j = 1, 2, ...,m, where ei’s, fj ’s are

idempotents and ni’s, mj ’s are nilpotent elements of S and T respectively. Therefore (s, t) ∈ R,
can be expressed as

(s, t) = (ei, fj) + (ni,mj),

which are mn nil clean expressions of (s, t) ∈ R. Hence

Nin(R) ≥ mn.

If possible let Nin(R) > nm, say nm+ 1, then there exists an element (a, b) ∈ R, such that it has

at least nm+ 1 nil clean expressions in R. That is

(a, b) = (gi, hi) + (ci, di),

where i = 1, 2, . . . ,mn+1, (gi, hi)
2 = (gi, hi) and (ci, di) ∈ nil(R). So a = gi+ ci and b = hi+di

are nil clean expressions for a and b respectively. Let

K = {(gi, hi) | i = 1, 2, 3, . . . ,mn, mn+ 1}.

Now we have

| K | = nm+ 1

⇒ | {gi} | . | {hi} | = nm+ 1

⇒ | {gi} |> n or | {hi} |> m,

which gives Nin(S) > n or Nin(T ) > m, which is absurd.

Lemma 3.4. Let I be an ideal of R with I ⊆ nil(R) and let n ≥ 1 be an integer. Then the following
hold

1. If idempotents lift modulo I, then Nin(R/I) = NinR.

2. If Nin(R) ≤ n, then every idempotent of R/I can be lifted to at most n idempotents of R.

Lemma 3.5. Let R =

(
A M
0 B

)
, where A and B are rings, AMB is a bimodule. Let Nin(A) = n

and Nin(B) = m. Then

1. Nin(R) ≥ |M |.

2. If (M,+) ∼= Cpk , where p is a prime and k ≥ 1, then Nin(R) ≥ n+ [n2 )(|M | − 1), where [n2 )

denotes the least integer greater than or equal to n
2 .

3. Either Nin(R) ≥ nm+ |M | − 1 or Nin(R) ≥ 2nm.
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Proof. (i) Let α =

(
1A 0

0 0

)
. Then we have{(

1A w
0 0

)
| w ∈M

}
⊆ η(α)

as (
1A w
0 0

)
−
(

1A 0

0 0

)
=

(
0 w
0 0

)
is nilpotent.

So we have

Nin(R) ≥ |η(α)| ≥ |M |.
(ii) Let q = pk and a = ei +ni, i = 1, 2, . . . n be n distinct nil clean expressions of a in A. For any
e = e2 ∈ A

(M,+) = eM ⊕ (1− e)M.

Since (M,+) ∼= Cpk , so (M,+) is indecomposable and hence

M = eM or = (1− e)M.

Assume that

(1− e1)M = · · · = (1− es)M = M and es+1M = · · · = enM = M.

If s ≥ (n− s) (i.e., s ≥ [n2 )), then for α =

(
1A − a 0

0 0

)
, we have

η(α) ⊇
{(

1A − ei 0

0 0

)
,

(
1A − ej w

0 0

)
: 1 ≤ i ≤ n, 1 ≤ j ≤ s, 0 �= w ∈M

}
,

so

|η(α)| ≥ n+ s(q − 1).

If s < (n− s) (i.e., n− s ≥ [n2 )), for β =

(
a 0

0 0

)
η(β) ⊇

{(
ei 0

0 0

)
,

(
ej w
0 0

)
: 1 ≤ i ≤ n, s+ 1 ≤ j ≤ n, 0 �= w ∈M

}
,

therefore

|η(β)| ≥ n+ (n− s)(q − 1).

Hence

Nin(R) ≥ n+
[n
2

)
(q − 1).

(iii) Let a = ei+ni, i = 1, 2, . . . n and b = fj +mj , j = 1, 2, . . .m be distinct nil clean expressions

of a and b in A and B respectively.

Case I:
If ei0M(1 − fj0) + (1 − ei0)Mfj0 = 0 for some i0 and j0. Then ei0w = wfi0 for all w ∈ M . Thus

for α =

(
1A − a 0

0 b

)
η(α) ⊇

{(
1A − ei 0

0 fj

)
,

(
1A − ei0 w

0 fj0

)
; 1 ≤ i ≤ n, 1 ≤ j ≤ m; 0 �= w ∈M

}
,
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so we have |η(α)| ≥ mn+ |M | − 1.
Case II:
If eiM(1− fj) + (1− ei)Mfj �= 0 for all i and j. Take

0 �= wij ∈ eiM(1− fj) + (1− ei)Mfj for each pair (i, j).

For α =

(
a 0

0 b

)
, we have

η(α) ⊇
{(

ei 0

0 fj

)
,

(
ei wij

0 fj

)
; 1 ≤ i ≤ n, 1 ≤ j ≤ m; 0 �= wij ∈M

}
,

thus |η(α)| ≥ 2mn.
Cases I and II imply, either

Nin(R) ≥ nm+ |M | − 1 or Nin(R) ≥ 2nm.

Lemma 3.6. Let R =

(
A M
0 B

)
, where A and B are rings, AMB is a bimodule with (M,+) ∼=

C2r . Then Nin(R) = 2rNin(A)Nin(B).

Lemma 3.7. Let A and B be rings and AMB a nontrivial bimodule. If R =

(
A M
0 B

)
is a

formal triangular matrix ring, then Nin(A) < Nin(R) and Nin(B) < Nin(R).

Lemma 3.8. Let R be a ring with unity, then In(R) ≥ Nin(R), where In(R) is the clean index of
R.

Proof. Let Nin(R) = k, then there is at least an element a ∈ R, such that it has k nil clean

expressions in R, i.e.,

a = ei + ni, for i = 1, 2, · · · , k,

where ei ∈ idem(R) and ni ∈ nil(R). From this we get,

a− 1 = ei + (ni − 1)

are k clean expression for (a − 1) ∈ R, and therefore In(R) ≥ k, hence for any arbitrary ring with

unity

In(R) ≥ Nin(R).

Rings of nil clean indices 1, 2 and 3

Theorem 3.9. Nin(R) = 1 if and only if R is an abelian ring.
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Proof. (⇒) Part is obvious.

(⇐) Let R be an abelian ring and e a non zero idempotent of R. We claim that e can not be written

as sum of two nilpotent elements. Suppose e = a + b where a, b ∈ Nil(R) and for positive integers

n < m, an = 0 = bm. Then (e− a)m = 0, using binomial theorem we get

em −
(
m

1

)
ae(m−1) +

(
m

2

)
a2e(m−2) − · · ·+ (−1)(n−1)

(
m

n− 1

)
a(n−1)e(m−n+1) = 0

which gives

e

[
1−
(
m

1

)
a+

(
m

2

)
a2 − · · ·+ (−1)(n−1)

(
m

n− 1

)
a(n−1)

+(−1)n
(
m

n

)
an + (−1)(n+1)

(
m

n+ 1

)
a(n+1) + · · ·+ (−1)mam

]
= 0

this implies

e(1− a)m = 0,

therefore we get, e = 0 [ since 1− a ∈ U(R)].
Similarly, if n > m, then (e − b)n = 0 and so e = 0, a contradiction. Hence, no nonzero

idempotent can be written as sum of two nilpotent elements and therefore Nin(R) = 1.

Above theorem gives following observations:

1. A ring R with Nin(R) = 1 is always Dedekind finite, but the converse is not true can be

verified with counter example.

2. Rings with trivial idempotents have nil clean index one and consequently the local rings are

of nil clean index one. If Nin(R) = 1, then it is easy to see that idempotents of R[[x]] are
idempotents of R, and for any

α = α0 + α1x+ · · · ∈ R[[x]],

we have

ηR[[x]](α) ⊆ ηR(α0),

this gives

Nin(R[x]) = Nin(R[[x]]) = 1.

But if Nin(R) > 1 then, there is some noncentral idempotent e ∈ R, such that er �= re for

some r ∈ R. So either

er(1− e) �= 0 or (1− e)re �= 0.

Let er(1− e) �= 0, then we have

a = e+ er(1− e)

= [e+ er(1− e)xi] + [er(1− e)(1− xi)],

where i is a positive integer, are infinitely many nil clean expressions of a in R[x], which
implies

Nin(R[x]) =∞.

Now we have the following theorem.
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Theorem 3.10. Nin(R[[x]]) is finite iff Nin(R) = 1.

We characterize rings of nil clean index 2. From the discussion above we see that such rings

must be non abelian.

Theorem 3.11. Nin(R) = 2 if and only if R =

(
A M
0 B

)
, where Nin(A) = Nin(B) = 1 and

AMB is a bimodule with |M | = 2.

Proof. (⇐) For α0 =

(
0 0

0 1B

)
∈ R, we have{(

0 ω
0 1B

)
; ω ∈M

}
⊆ η(α0).

Therefore

Nin(R) ≥| η(α0) |≥|M |= 2.

For any α =

(
a x
0 b

)
∈ R

η(α) =

{(
e w
0 f

)
; e ∈ η(a), f ∈ η(b), w = ew + wf

}
.

Because |M |= 2, | η(a) |≤ 1, | η(b) |≤ 1, it follows that | η(α) |≤ 2, hence Nin(R) = 2.
(⇒) Suppose R is non abelian and let e2 = e ∈ R be a non central idempotent. If neither eR(1− e)
nor (1− e)Re is zero, then take 0 �= x ∈ eR(1− e) and 0 �= y ∈ (1− e)Re. Then

e = e+ 0

= (e+ x)− x

= (e+ y)− y

are three distinct nil clean expressions of e in R. So without loss of generality, we can assume that

eR(1− e) �= 0 but (1− e)Re = 0.

The Peirce decomposition of R gives

R =

(
eRe eR(1− e)
0 (1− e)R(1− e)

)
.

As above 2 = Nin(R) ≥| eR(1− e) |; so | eR(1− e) |= 2. Write

eR(1− e) = {0, x}.

If possible let a = e1 + n1 = e2 + n2 be two distinct nil clean expressions of a in eRe. If e1x = x(
a 0

0 0

)
=

(
e1 0

0 0

)
+

(
n1 0

0 0

)
=

(
e2 0

0 0

)
+

(
n2 0

0 0

)
=

(
e1 x
0 0

)
+

(
n1 x
0 0

)



Recent Trends in Mathematical Sciences 61

are three distinct nil clean expressions of

(
a 0

0 0

)
∈ R. If e1x = 0,

(
a 0

0 1B

)
=

(
e1 0

0 1B

)
+

(
n1 0

0 0

)
=

(
e2 0

0 1B

)
+

(
n2 0

0 0

)
=

(
e1 x
0 1B

)
+

(
n1 x
0 1B

)

are three distinct nil clean expressions of

(
a 0

0 1B

)
inR. This contradiction shows that Nin(eRe) =

1, similarly, Nin((1− e)R(1− e)) = 1.

The next proposition gives a sufficient condition for rings to have nil clean index 3.

Proposition 3.12. If R =

(
A M
0 B

)
, where Nin(A) = Nin(B) = 1 and AMB is a bimodule with

|M | = 3, then Nin(R) = 3.

Next we have following proposition for matrix ring.

Proposition 3.13. Let S be a ring with unity and let n ≥ 2 be an integer. Then

1. Nin(Mn(S)) ≥ 3.

2. Nin(Mn(S)) = 3 iff n = 2 and S ∼= Z2.

Formal triangular ring with nil clean index 4

Theorem 3.14. Let R =

(
A M
0 B

)
, where A and B are rings, AMB is a non trivial bimodule.

Then Nin(R) = 4 if and only if one of the following holds:

1. (M,+) ∼= C2 and Nin(A)Nin(B) = 2.

2. (M,+) ∼= C4 and Nin(A) = Nin(B) = 1.

3. (M,+) ∼= C2 ⊕ C2 plus one of the following

(a) Nin(A) = Nin(B) = 1.

(b) Nin(A) = 1, B =

(
S W
0 T

)
, where Nin(S) = Nin(T ) = 1 and |W | = 2, and

eM(1B − f) + (1A − e)Mf �= 0, for all e2 = e ∈ A and f ∈ η(b), where b ∈ B with
|η(b)| = 2.

(c) Nin(B) = 1, A =

(
S W
0 T

)
, where Nin(S) = Nin(T ) = 1 and |W | = 2, and

eM(1B − f) + (1A − e)Mf �= 0, for all e2 = e ∈ B and f ∈ η(a), where a ∈ A with
|η(a)| = 2.
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Abstract. In this chapter, we are trying to analyse the applications of finite fields to compute

convolutions of finite sequences of integers. To do so, we are using basics of finite field of the form

Fpn . Furthermore, d-point Fourier-like transforms are introdcued and proven to be the only linear

transforms in Fpn which has the circular convolution property. It is well known that the set G(p)
of integers modulo p (a prime) is subfield of Fpn , then the d-point transformation is used over Fpn

to compute the transform of a sequence of integers {a1, a2, . . . , an, } where an lies in the range

−[(p − 1)/2] ≤ an ≤ (p − 1)/2. Thus, for two such sequences, by using the circular convolution

computed using d-point transforms over Fpn . Again the d-point transforms of Fqn are shown to be

perfect for computing convolutions of two sequences of complex integers also. The number of points

in the transform, should divide the order q2 − 1 = 2p+1(2P−1 − 1) of the multiplicity subgroup of

Fp2 , so the number of points in a circular transform over Fp2 can be chosen to be a power of 2. Thus

one of the best method is the fast Fourier transform (FFT) algorithm to compute convolutions of

complex numbers without any kind of round-off error.

2010 Mathematical Sciences Classification. 12E20, 11T23, 11T30.

Keywords. finite field, discrete Fourier transform.

1 Introduction

M.Rader in [1] already proven that the convolution of two finite sequences of integers (an) and

(b, n) for n = 1, 2, ..., d can be obtained as the inverse transform of the product of two transforms

which must be other than the usual discrete Fourier transform (DFT). Rader defined transforms of

the form

An =

d−1∑
i=0

ai2
ni mod(M)

. [1]

where M is either a Mersenne prime number M = 2p − 1 , p be a prime , or M was the Fermat

number

63
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M = 1 + 22
k

,

where k an integer.

One of the primary advantages of the Rader transform over the DFT,

Fn =

d−1∑
i=0

aiω
in

[2]

where wω is a d root of unity, which using by the logic that the multiplications by powers of ω can be

replaced in binary arithmetic by simple shifts. Obviously , this advantage must be weighed against

the difficulties of computing the answer modulo(M) and of the numeric constraints, relating word

length, length of sequence d together with compositeness of d, added by the above choices for M ,

introduced by Rader. This chapter is focused on review of the Rader transform first by studying

the class of transforms, given by equation [1], proceeded by presenting more information of the

computational algorithm for calculating such a convolution with [1]. Next, the class of transforms

in [1] will increase to include a Fourier type transform over a finite field Fq. This generalization

was discussed by J. M. Pollard in [2].

2 Discrete Fourier Transformation on Finite Field

The number of elements finite field Fq is of the form q = pn, in which p is prime and n is positive

integer. To construct a finite field Fq, first we have to consider an n degree irreducible polynomial

f(x) over Fq . The elements of Fq are all in polynomial form

g(α) =
n−1∑
i=0

aiα
i

where ai’s are in Fq.where α is a root of pf(x), i.e., f(α) = 0. Then, the product g(α) of two

elements of Fq say g1(α) and g2(α) in Fq be the residue of g1(x)g2(x)modf(x) with α substituted

for x. That is, g(α) is found by

g(x) ≡ g1(x)g2(x)modf(x)

where x = α. Similarly, the addition is defined as S(α) is found by

S(x) = g1(x) + g2(x)modf(x)

where x = α. By taking addition and multiplication of all polynomials f(α) in this form, the

addition and multiplication is defined. For further details readers are requested to see [3].

Let α and x be elements of a finite field, denoted by Fq, and then we consider the mapping of

subset of d distinct non-zero elements

Δd = {χ0, χ1, ...χd−i} ∈ Fq

.

into Fq with the following mapping

Λ(x) =
d−1∑
i=0

αix
i
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[3]

which is the most general possible mapping from Fq into Fq. This mapping can also be displayed

as a system of linear equations in which the coefficients are in Fq and which can be represented as

matrix form.

Λd = χλd

.

Where Λd and λd are column matrices.

Where λd =

⎡⎢⎢⎢⎢⎢⎢⎣
α0

α1

.

.

.
αd−1

⎤⎥⎥⎥⎥⎥⎥⎦ and Δd =

⎡⎢⎢⎢⎢⎢⎢⎣
Λ(χ0)

Λ(χ1)

.

.

.
Λ(χd−1)

⎤⎥⎥⎥⎥⎥⎥⎦

and χ =

⎡⎢⎢⎢⎣
1 χ0 χ2

0 . . . χd−1
0

1 χ1 χ2
1 . . . χd−1

1
...

. . .
. . .

. . .
...

1 χd−1 χ2
d−1 . . . χd−1

d−1

⎤⎥⎥⎥⎦
This polynomial mapping is also denoted as a linear mapping of the vector λd into the vector Λd.

Such a mapping is one to one or is invertible if matrix χ has an inverse, that is, if the determinant

|χ| of χ is non-zero.

Which is determined as

|χ| =
∏
j<i

(χi − χj)

since all the χi are distinct, hence determinant is non zero and hence χ−1 exists and system of

equations can be solved as

λd = χ−1Λd

,

which is the inverse transformation.

From this onwards we are going to focus on circular convolutions. Next let us apply this on

matrix form as the constraint that it can be used to compute circular convolution Cn of sequences

an and bn.

Cn =

d−1∑
i=0

aibn−i

[4]

where (n− i) be the residue of (n− i)modd.
main objective is to transform of Cn , namely, C to be given by

C =

⎡⎢⎢⎢⎣
C(χ0)

C(χ1)
...

C(χd−1)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Λ(χ0) . β(χ0)

Λ(χ1) . β(χ1)
...

Λ(chid−1) . β(χd−1)

⎤⎥⎥⎥⎦ = Λ⊗ β
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Then after expanding, equating the coefficients of ajbk , one gets

χ
(j+k)
i = χj+k

i

[5]

for (k, j, i = 0, 1, 2...d− 1) where (j + k) being the residue of (j + k) mod d.

Now for transform to yield circular convolutions, χi, must be a d-th root of unity for i = 1, 2, ...d
in Fq.

Since the group F∗
q is cyclic group of order q − 1, the application for χ for an element χi ∈ Fq

gives that integer d divides q−1. i.e, d|q−1 then the transform (3) will yield a circular convolution.

Furthermore, since the set of elements (χ0, χ1, ..., χd−1) are distinct and all are dth roots of unity.

Hence this set is also a cyclic subgroup of the cyclic subgroup of F∗
q . Hence the set, (χ0, χ1, ..., χd−1),

equals the subgroup {1, α, α2, ...., αd−1} = ψd i.e.,

(χ0, χ1, ..., χd−1) = {1, α, α2, ...., αd−1} = ψd

[6]

where α is a primitive element of F∗
q .

We consider that the group {1, α, α2, ...., αd−1} = ψd is replaced for (χ0, χ1, ..., χd−1) in trans-

form (3), the transform becomes

Λi =

d−1∑
j=0

aiα
ij

[7]

where i = 0, 1, 2, . . . , d− 1.

For invert transform, we are using the fact that all the elements of ψd are dth root of unity, ie

they satisfy the equation

xd − 1 = 0

.

Now xd − 1 factors as following

xd − 1 = (x− 1)

d−1∑
j=0

xj

[8].

Then we have the following

d−1∑
j=0

xj = 0 forx �= 1andx ∈ ψd.

d−1∑
j=0

xj = 1 = [d] forx = 1.

Where [d] is d modp. This formula is introduced by Pollard [4] and by Reed and Solomon in [5].
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Now for inverse convolution, we need discrete delta function as given below

δd(m) = 0 ifm �≡ 0modd

= 1 ifm ≡ 0modd

Then we have the inverse transformation Ij for j = 0, 1, 2, . . . , d− 1 as follows

[d]−1
d−1∑
j=0

Ijα
−jp =

d−1∑
i=0

aib(p−i)

[9]

The result in [9], gives that satisfy the conditions on the transform, given by [3], is both necessary

and sufficient for transform [3] to computing circular convolutions. This generalizes a similar

theorem, given by Agarwal and Burrus in [6], for the field of complex numbers i.e, C to all fields

both finite and infinite. Now, we are going to focus on how to restrict the finite field transform,

given by [8], so that it yields circular convolutions over both the integers and complex integers.

FINITE FIELD TRANSFORMS

If n is an integer of magnitude such that less than or equal (p − l)/2 where p is a prime. Then

integer a satisfies

−[(p− 1)/2] ≤ n ≤ (p− 1)/2

If n > 0,then n is the residue mod p.
If n < 0 i.e, n = −m, where m > 0, then n ≡ p−m modp

Thus the set of positive integers

{−p− 1

2
, . . . ,−2,−1, 0, 1, 2, . . . , p− 11

2
}

relates in a one-to-one manner with the following set of residues mod p,

{(p− p− 1

2
), . . . , (p− 2), (p− 1), 0, 1, 2, . . . ,

p− 11

2
}

Since the latter one consists of all residues modulo p, this set uniquely represents the set of all

positive and negative real integers of magnitude less than or equal to (p− 1)/2. Furthermore, this

set of residues mod p composes precisely the finite field Fp, hence the above maps the set of integers

less than or equal to (p− 1)/2 onto Fq in a one-to-one way. To do the arithmetic operations in Fp

which arrive at the correct arithmetic answer, one must often restrict the operating ranges of the

integer variables even further.

To determine convolution, let a and b are elements in a finite field Fp with transforms of the

form suggested by Rader [1], we need first introduce the integers in such a field. To preserve the

arithmetic operations of addition and multiplication on Fp, the representation must necessarily

restricted to Fp as shown . Moreover, Fp is a subfield of Fpn ; in fact, the prime field of Fp for all

n = 1, 2, 3, .... Thus, convolutions can be computed with transforms as shown above on a finite field

Fpn where a and b are restricted to Fp.
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If an element α can be determine in Fq so that multiplications by powers of α are simple

in calculation, the extension might be handy in increasing the number of possible points in the

convolution. This immediately follows from the fact that d is a divisor of pn− 1 and the number of

divisors of pn − 1 is obviously greater than the number of divisors of p− 1.

Furthermore it can be determined that , for certain prime numbers p, this computational re-

quirement can be reduced from four to two Rader-type transforms. For that, the following condition

on p is necessary.

X2 − 1 ≡ 0mod p is not solvable

Further this is equivalent to (
−1
p

)
= (−1)(p−1)/2

Where
(
a
b

)
is Legendre’s symbol, which is given by(a

b

)
= +1, if a quadratic residue mod b

= −1 if a is quadratic nonresidue mod b

Then the two cases emerges on the basis of two kinds of primes.

Case 1 =Mersenne primes of the form q = 2p − 1

Case 2 = Format primes of form q = 22
n

+ 1, where 1 ≤ n ≤ 4

From simple calculation, one can determine that the Mersenne primes have an advantage over

the Fermat primes in the calculation of convolutions of complex integers over Fp. Inspite of that,

Rader points in [1] states that, this advantage must be weighed against the fact that the fast Fourier

transform (FFT) algorithm can be applied to the transforms, using Fermat primes, but not by using

the Mersenne primes.
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Abstract. Study of different partition function with some certain restriction has got great attention

in recent times.One of the interesting partition function is t-core partition. A partition of n is called

a t-core partition of n if none of its hook number is divisible by t. Here, in this paper, we give the

brief introduction of t-core partition and we have done a literature review about the work done on

the t-core partition function.
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1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers, called parts,

whose sum equals n. The number of partitions of a positive integer n is denoted by p(n). For

convenience, we set p(0) = 1, which means it is considered that 0 has one partition. The generating

function for the partition function is generally given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
(1.1)

where

(a; q)∞ =

∞∏
n=0

(1− aqn). (1.2)

In 1919, Ramanujan [12], [13, p. 210-213] established

p(5n+ 4) ≡ 0 (mod 5), (1.3)

p(7n+ 5) ≡ 0 (mod 7), (1.4)

p(11n+ 6) ≡ 0 (mod 11) (1.5)

71
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Ramanujan’s theta-functions identities are defined by

φ(q) := f(q, q) =
∞∑

n=−∞
qn

2

= (−q; q2)∞(q2; q2)∞(q; q2)∞(−q2; q2)∞,

ψ(q) := f(q, q3) =

∞∑
k=0

qk(k+1)/2 = (q2; q2)∞(q; q2)∞,

and

f(−q) := f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞,

where f(a, b) =
∑∞

k=−∞ ak(k+1)/2bk(k−1)/2, |ab| < 1 is the Ramanujan’s general theta-function

Motivated by Ramanujan’s congruences on p(n) many other partition function are studied and

Ramanujan type congruences are established by several mathematicians and researchers.One of the

famous partition function is t-core partition. For a given partition λ = λ1 + λ2 + · · · + λk the

Ferrers-Young diagram of λ is an array of nodes with λi nodes in the ith row. The (i, j) hook is the

set of nodes directly below, together with the set of nodes directly to the right of the (i, j) nodes,
as well as the (i, j) nodes itself.The hook number is the total number of nodes on the (i, j) hook.

A partition of n is called a t-core partition of n if none of its hook number is divisible by t.
Example:
The Ferrers-Young diagram of the partition 3+2+1 of 6 is

• • •
• •
•

The nodes (1, 1), (1, 2), (1, 3), (2, 1), (2, 2) and (3, 1) have hook numbers 5, 3, 1, 3, 1 and 1,

respectively. It is easily seen from above that the partition 3 + 2 + 1 of 6 is 4-core but it is not a

3-core and 5-core.

The number of partitions of n that are t-cores is denote by at(n) . From [11, Eq.(2.1)], the

generating function at(n) is given by

∞∑
n=0

at(n)q
n =

(qt; qt)t∞
(q; q)∞

. (1.6)

2 Review of related literature for t-core partition function

In recent times study of partition function with some certain restrictions has become one of the

popular research topic. The arithmetic properties of t-core partitions have been studied by many

authors, for example see [2, 3, 5, 6, 7, 8, 8, 9, 19] and references there in. Example of a 3-core

identity also appears in Baruah and Berndt [1]. Numerous congruences of the t-core partition

function have been established in the spirit of Ramanujan by employing theta function identities

and modular equations.

Hirchhorn and Sellers [19] proved two congruences involving 4-cores for modulo 2 and 4 respectively.
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Theorem 2.1. [19] For all n ≥ 0, we have

a4(9n+ 2) ≡ 0 (mod 2), (2.1)

a4(9n+ 8) ≡ 0 (mod 4). (2.2)

Hirchhorn ans Sellers [7] proved many amazing facts about 4-cores. For example,

Theorem 2.2. [7] For n ≥ 0, we have

a4(27n+ 5) = 3a4(3n), (2.3)

a4(27n+ 14) = 5a4(3n+ 1). (2.4)

Hirchhorn ans Sellers [8] derived an explicit formula for a3(n) by using elementary means in

terms of the prime factorization of 3n+ 1. Chen [8] proved a conjecture on congruences for 2t-core

partition and also established many congruences for p-core partition function when 5 ≤ p ≤ 47.
Baruah and Nath [2] proved some results for 3-core partition function.

Theorem 2.3. [2] If u(n) denotes the number of representations of a non-negative integer n in the
form x2 + 3y2 with x, y ∈ Z, and a3(n) is the number of 3-cores of n, then

u(12n+ 4) ≡ 6a3(n). (2.5)

Lemma 2.4. [2] If u(n) denotes the number of representations of a non-negative integer n in the
form x2 + 3y2 with x, y ∈ Z and if p ≡ 2 (mod 3) is an odd prime, then

u(p2n) = u(n). (2.6)

Baruah and Nath [3] also proved some results for 4-core partition function. By employing theta

function identities they proved that u(8n+ 5) = 8a4(n) = v(8n+ 5)= 1
3r3(8n+ 5), where u(n) and

v(n) are number of representations of a nonnegative integer n in the forms x2 + 4y2 + 4z2 and

x2 + 2y2 + 2z2, where x, y, z ∈ Z and a4(n) and r3(n) are the number of 4-cores of n and the

number of representations of n as a sum of three squares, respectively. Baruah and Nath [3] also

established some infinite family of arithmetic relations of a4(n). For example,

Theorem 2.5. [3] For n ≥ 0, and k ≥ 1,(5k+1 − 1

4

)
a4(25n) = a4

(
52k+2n+

52k+1 − 5

8

)
. (2.7)

Theorem 2.6. [3] For n ≥ 0, and k ≥ 1,(5k+1 − 1

4

)
a4(25n+ 5) = a4

(
52k+2n+

9 · 52k+1 − 5

8

)
. (2.8)

Theorem 2.7. [3] For n ≥ 0, and k ≥ 1,(5k+1 − 1

4

)
a4(25n+ 10) = a4

(
52k+2n+

17 · 52k+1 − 5

8

)
. (2.9)

Theorem 2.8. [3] For n ≥ 0, and k ≥ 1,(5k+1 − 1

4

)
a4(25n+ 20) = a4

(
52k+2n+

33 · 52k+1 − 5

8

)
. (2.10)
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3 Concluding Remarks

As we have seen that there are so many congruences and identities for t-core partition function

that have been proved by different mathematicians. Those results that are obtained by employing

modular equation or q-series identities which will help the researchers to do futher research in

partition theory in the spirit of Ramanujan.
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1 Introduction

In 1984, Andrews [1] introduced generalized Frobenius partitions (or, simply F-partitions). A

generalized Frobenius partition or an F-partition of n is a notation of the form(
a1 a2 . . . ar
b1 b2 . . . br

)
of nonnegative integers ai’s, bi’s with

n = r +
r∑

i=1

ai +
r∑

i=1

bi,

where each row is of the same length and each is arranged in non-increasing order. Andrews
considered two general classes of F-partitions, in one of which each non-negative integer is allowed
to have k-copies (colors) and strict decrease in each row is maintained. If cφk(n) denotes the number
of such F-partitions of n, then the generating function for cφk(n) is

∞∑
n=0

cφk(n)q
n =

∞∏
n=1

1

(1− qn)k

∞∑
m1,m2,··· ,mk−1=−∞

q
Q(m1,m2,··· ,mk−1),

where |q| < 1 and

Q(m1,m2, · · · ,mk−1) =

k−1∑
j=1

m2
j +

∑
1≤i<j≤k−1

mimj .
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2 Literature Review

Andrews [1] found the generating functions

∞∑
n=0

cφ1(n)q
n =

1

(q; q)∞
,

∞∑
n=0

cφ2(n)q
n =

(q2; q4)∞
(q; q2)4∞(q4; q4)∞

,

∞∑
n=0

cφ3(n)q
n =

(q12; q12)∞(q6; q12)3∞
(q; q6)5∞(q5; q6)5∞(q4; q4)2∞(q3; q6)7∞

+ 4q
(q12; q12)∞(q4; q4)∞

(q6; q12)∞(q2; q4)∞(q; q)3∞
,

and proved the congruences

cφ2(5n+ 3) ≡ 0 (mod 5),

cφk(n) ≡ 0 (mod k2) if k is prime and does not divide n,

cφk(n) ≡ cφ1(n/k) (mod k2) if k is prime and divides n,

where, as customary, for any complex number a and |q| < 1, we define

(a; q)∞ :=

∞∏
k=0

(1− aqk).

In 1987, Kolitsch [14] stated this congruence in a slightly different way and show that it can be

extended to include all positive values of m. Specifically, he showed that the number of F-partitions

of n using k colors whose order is k under cyclic permutation of the k colors,

cφk(n) =
∑

d|(k,n)
μ(d)cφk/d(n/d) ≡ 0 (mod k2).

In [15], he established a relationship between colored F-partitions with 5 and 7 colors and ordinary

partitions by proving that for a positive integer n,

cφ5(n) = 5p(5n− 1),

cφ7(n) = 7p(7n− 2),

where p(n) denotes the number of partitions of n. In 1990, Kolitsch [16] showed that

cφ3(n) = cφ3(n)− p(n/3) =
9q(q9; q9)3∞

(q; q)3∞(q3; q3)∞
. (2.1)

Using this result he then showed that cφ3(n) is congruent to zero modulo large powers of 3 for

certain values of n. Specifically, if λα is the reciprocal of 8 modulo 3α, then

cφ3(3
αn+ λα) ≡ 0

{
mod 32α+2, if α is even,

mod 32α+1, if α is odd.
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For more works by Kolitsch on this partition function, see [17].

Sellers [22] then found the following congruences.

Theorem 2.1. For m = 5, 7 and 11, and for all n ≥ 1,

cφm(mn) ≡ 0 (mod m3).

He also remarked that congruences like the above might hold for other values of m as well. In

another paper, Sellers [23] conjectured that for all n ≥ 1 and α ≥ 1,

cφ2(5
αn+ λα) ≡ 0 (mod 5α), (2.2)

where λα is the least positive reciprocal of 12 modulo 5α. Sellers [24] also found the following

generating function for cφ2(n).

Theorem 2.2. For all n ≥ 0,

∞∑
n=0

cφ2(n)q
n =

4q(q16; q16)2∞
(q; q)2∞(q8; q8)∞

.

With the help of the above theorem and (2.1), he proved that

cφ2(2n) ≡ 0 (mod 23),

cφ3(3n) ≡ 0 (mod 34). (2.3)

In 1996, Ono [5] used the theory of modular forms to arrive at the following congruences.

cφ3(63n+ 50) ≡ 0 (mod 7),

cφ3(5n+ 2) ≡ p

(
5n+ 3

2

)
(mod 5),

except when n = 3Tm and Tm =
m(m+ 1)

2
is the m−th triangular number, and

cφ3(15Tm + 2) ≡ (−1)m(m+ 3) (mod 5).

Using a technique similar to Ono [5], Lovejoy [19] also proved the following congruences.

cφ3(45n+ 23) ≡ 0 (mod 5),

cφ3(45n+ 41) ≡ 0 (mod 5),

cφ3(63n+ 50) ≡ 0 (mod 7),

cφ3(99n+ 95) ≡ 0 (mod 11),

cφ3(171n+ 50) ≡ 0 (mod 19).

The cases α = 1, 2, 3, 4 of (2.2) were proved by Eichhorn and Sellers [9] in 2002. However,

Sellers’ conjecture (2.2), for all α, was proved by Paule and Radu [18] using modular functions that

belong to a Riemann surface of genus 1.



78 Nilufar Mana Begum

Motivated by a question of Lovejoy [19], Xiong [25], using modular forms, proved the following

congruences modulo powers of 5.

cφ3(45n+ 23) ≡ 0 (mod 54),

cφ3(45n+ 41) ≡ 0 (mod 54),

cφ3(75n+ 22) ≡ 0 (mod 52),

cφ3(75n+ 72) ≡ 0 (mod 52).

In [4], Baruah and Ojah found a simple proof of Sellers’ result (2.3) and the congruence

cφ3(3n+ 2) ≡ 0 (mod 33).

In [2, 3], Baruah and Sarmah applied the integer matrix exact covering systems developed by

Cao [5] to find the following generating functions.

Theorem 2.3. If, for |q| < 1,

ϕ(q) : =

∞∑
n=−∞

qn
2

and ψ(q) :=
∞∑

n=0

qn(n+1)/2,

then
∞∑

n=0

cφ4(n)q
n =

1

(q; q)4∞

(
ϕ3(q2) + 12qϕ(q2)ψ2(q4)

)
,

∞∑
n=0

cφ5(n)q
n =

1

(q; q)5∞

(
ϕ(q10)ϕ3(q2) + 12qϕ(q10)ϕ(q2)ψ2(q4) + 8qψ(q5)ψ3(q)

+ 12q3ψ(q20)ψ(q4)ϕ2(q) + 16q4ψ(q20)ψ3(q4)
)
,

∞∑
n=0

cφ6(n)q
n =

1

(q; q)6∞

(
ϕ3(q)ϕ(q2)ϕ(q6) + 24qψ3(q)ψ(q2)ψ(q3) + 4q2ϕ3(q)ψ(q4)ψ(q12)

)
,

∞∑
n=0

cφ4(n)q
n = 16q

ψ2(q2)ψ(q4)

(q; q)4∞
.

Baruah and Sarmah [2, 3] also derived the congruences

cφ4(2n+ 1) ≡ 0 (mod 42),

cφ4(4n+ 3) ≡ 0 (mod 44),

cφ4(4n+ 2) ≡ 0 (mod 4),

cφ6(2n+ 1) ≡ 0 (mod 4),

cφ4(3n+ 1) ≡ 0 (mod 32),

cφ6(3n+ 2) ≡ 0 (mod 32),

cφ4(2n) ≡ 0 (mod 43),

cφ4(4n+ 3) ≡ 0 (mod 44),

cφ4(4n) ≡ 0 (mod 44).
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Working on the generating functions for cφ4(n), cφ5(n), and cφ6(n) given in the above theorem,

several other congruences have been found by various authors.

Sellers [19] used the generating function for cφ4(n) to obtain the unexpected congruence

cφ4(10n+ 6) ≡ 0 (mod 5).

Employing some theta identities due to Ramanujan, the (p, k)−parametrization of theta func-

tions and the generating function for cφ4(n) given by Baruah and Sarmah [2], Xia [24] proved

that

cφ4(20n+ 11) ≡ 0 (mod 5).

Hirschhorn and Sellers [13] significantly extended the study of congruences satisfied by cφ4

modulo 5. By employing classical results in q-series, the well-known theta functions of Ramanujan,

and elementary generating function manipulations, they proved a characterization of cφ4(10n+ 1)

modulo 5 which leads to an infinite set of Ramanujan-like congruences modulo 5 satisfied by cφ4.

In particular, they proved the following:

Theorem 2.4. For any nonnegative integer n,

cφ4(10n+ 1) ≡
{

k + 1 (mod 5), if n=k(3k+1) for some integer k,
0 (mod 5), otherwise.

Lin [18] also used the generating function for cφ4(n) given by Baruah and Sarmah [2] to discover

a Ramanujan-type congruence modulo 7 for 4-colored generalized Frobenius partition function. He

proved that for n ≥ 0,

cφ4(14n+ 13) ≡ 0 (mod 7).

Zhang andWang [29] extended the study of congruences satisfied by cφ4 modulo 7. By employing

Ramanujan’s congruence p(7n + 5) ≡ 0 (mod7) and a corollary of the quintuple product identity,

proved that for all n ≥ 0,

cφ4(7n+ 6) ≡ 0 (mod 7).

While work on Ramanujan-like congruence properties satisfied by the functions cφk(n) continues,
unfortunately, in all cases, the authors restrict their attention to small values of k. This is often due

to the difficulty in finding a “nice” representation of the generating function for cφk(n) for large k.
Because of this, no Ramanujan-like congruences are known where k is large. Garvan and Sellers

[10] rectified this situation by proving several infinite families of congruences for cφk(n) where k is

allowed to grow arbitrarily large. The proof is truly elementary, relying on a generating function

representation which appears in Andrews’ Memoir [1] but has gone relatively unnoticed. Garvan

and Sellers [10] gave the following theorem.

Theorem 2.5. Let p be prime and let r be an integer such that 0 < r < p. If

cφk(pn+ r) ≡ 0 (mod p)

for all n ≥ 0, then

cφpN+k(pn+ r) ≡ 0 (mod p)

for all N ≥ 0 and n ≥ 0.
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Cui, Gu and Huang [10] obtained many infinite families of congruences for cφk(n), For example,

we have the following theorems.

Theorem 2.6. For α ≥ 1, n ≥ 0, and i = 1, 2, 3, 4,

cφ2

(
2 · 54αn+

(24i+ 55) · 54α−1 + 1

12

)
≡ 0 (mod 23).

For i = 1, 2, 3, 4, 5, 6,

cφ2

(
2 · 74αn+

(24i+ 77) · 74α−1 + 1

12

)
≡ 0 (mod 23).

Theorem 2.7. For α ≥ 1, n ≥ 0, and i = 1, 2, 3, 4,

cφ4

(
4 · 54αn+

(24i+ 85) · 54α−1 + 1

6

)
≡ 0 (mod 29).

For i = 1, 2, 3, 4, 5, 6,

cφ4

(
4 · 74αn+

(24i+ 119) · 72α−1 + 1

6

)
≡ 0 (mod 29).

For more works on generalized Frobenius partitions with k colors, we refer the papers by Chan,

Wang and Yang [6], Xia [23], Hirschhorn [12], and Gu, Wang and Xia [11].

Very recently, Chan, Wang and Yang [7] used the theory of modular forms to find representations

of the generating functions for cφk(n) for all positive integers k ≤ 17. They also found a host of

new congruences. For example, they [7, Theorem 5.2] found the following congruences.

Theorem 2.8. For any nonnegative integer n,

cφ9(9n+ 3) ≡ 0 (mod 32),

cφ9(9n+ 6) ≡ 0 (mod 32),

cφ9(3n+ 1) ≡ 0 (mod 34),

cφ9(3n+ 2) ≡ 0 (mod 36).

3 Conclusion

Most of the congruences mentioned above have been proved by using the theory of modular forms.

It would be interesting to find the elementary proofs in the spirit of Ramanujan. Also, the exact

generating functions for cφk for larger values of k is still unknown. That remains as an open problem

for further research.
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Abstract. In 2007, Andrew’s and Paul introduced broken k-diamond partition functions. After

that several mathematician studied the congruence properties for this partition function and in

2011, Fu generalized the broken k-diamond partitons and called it as k dots bracelet partition
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bracelet partition functions, and also give a brief account of works done so far on these partition

functions.
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A partition λ = (λ1, λ2, . . . , λk) of a non-negative integer n is a finite sequence of non-increasing

positive integer parts λi such that n =
∑k

i=1 λi. The partition function p(n) is the number of

partitions of a non-negative integer n, with the convention that p(0) = 1. For example, we have

p(4) = 5, as there are five partitions of 4, namely, (4), (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1). The

generating function for p(n) is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
,

where, here and throughout the chapter, for |q| < 1, (a; q)∞ :=
∏∞

n=0(1− aqn).
Ramanujan’s so-called “most beautiful identity” for the partition function p(n) is

∞∑
n=0

p(5n+ 4)qn = 5
(q5; q5)5∞
(q; q)6∞

, (0.1)

which readily implies one of his three famous partition congruences, namely,

p(5n+ 4) ≡ 0 (mod 5). (0.2)
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The other two famous partition congruences found by Ramanujan are

p(7n+ 5) ≡ 0 (mod 7) (0.3)

and

p(11n+ 6) ≡ 0 (mod 11). (0.4)

We refer to a recent paper by Bruinier, Folsom, Kent and Ono [5] for further references on the

partition function.

MacMahon in his renowned book “Combinatory Analysis” [16] introduced the partition analysis

as the most important tool for solving combinatorial problems which are related with the system of

linear diophantine inequalities and equations. MacMahon commenced with the most simplest case

of plane partitions where the non-negative integers ai of the partitions placed at the corners of a

square such that the following order relations are satisfied:

a1 ≥ a2, a1 ≥ a3, a2 ≥ a4 and a3 ≥ a4. (0.5)

To represent ≥ relation, an arrow can be used as an alternative, for instance Fig.1 represents (0.5).

Here and throughout the chapter, an arrow pointing from ai to aj is interpreted as ai ≥ aj .

Figure .1: The inequality

By using partition analysis, MacMahon derived the generating function

ϕ :=
∑

xa1
1 xa2

2 xa3
3 xa4

4 ,

=
1− x2

1x2x3

(1− x1)(1− x1x2)(1− x1x3)(1− x1x2x3)(1− x1x2x3x4)
,

where the sum is taken over all non-negative integers ai satisfying (0.5). MacMahon also observed

that, by putting x1 = x2 = x3 = x4 = q, the generating function becomes

1

(1− q)(1− q2)2(1− q3)
.
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Figure .2: A plane partition diamond of length n

By using MacMahon’s partition analysis, Andrews, Paule and Riese [2] introduced partition

diamonds as new variations of plane partitions as shown in Fig.2.

In 2007, Andrews and Paule [3] studied the generalization of this partition diamonds by intro-

ducing k-elongated partition diamonds as shown in Fig.3, as the building blocks of the chain.

Figure .3: A k-elongated partition diamond of length 1

Andrews and Paule [3] also introduced Broken k-diamonds. Broken k-diamonds consist of two

separated k-elongated partition diamonds of length n where in one of them, the source is deleted,

as shown in Fig.4.



86 Zakir Ahmed

Figure .4: A broken k-diamond of length 2n

Definition 0.1. For n, k ≥ 1, define

H♦
n,k := {(b2, . . . , b(2k+1)n+1, a1, a2, . . . , a(2k+1)n) ∈ N(4k+1)n,

the ai and bi satisfy all order relations in Fig.4}
h♦
n,k := h♦

n,k(x2, . . . , x(2k+1)n+1, y1, y2, . . . , y(2k+1)n+1)

:=
∑

(b2,...,b(2k+1)n+1,a1,a2,...,a(2k+1)n)∈H♦
n,k

xb2
2 · · ·x

b(2k+1)n+1

(2k+1)n+1y
a1
1 ya2

2 · · · ya(2k+1)n+1

(2k+1)n+1

and

h♦
n,k(q) := h♦

n,k(q, q, . . . , q).

Andrews and Paule [3] also found the generating function for the number of broken k-diamond

partitions of n as given in the next theorem.

Theorem 0.2. Let for n ≥ 0 and k ≥ 1, Δk(n) denote the total number of broken k-diamond
partitions of n. Then

h♦
∞,k(q) =

∞∑
n=0

Δk(n)q
n =

(q2; q2)∞
(q; q)3∞(−q2k+1; q2k+1)∞

. (0.6)

For k = 1, they also proved the congruence

Δ1(2n+ 1) ≡ 0 (mod 3) (0.7)

and stated three more conjectures.

In 2011, Fu [12] gave a combinatorial proof of (0.7) and also applied the combinatorial approach

to generalise the broken k-diamond partitions which he called k dots bracelet partitions. Before

defining k dots bracelet partitions, Fu defined infinite bracelet partitions which consist of repeating

diamonds and dots with k − 2 dots between two consecutive diamonds as shown in Fig.5 and we

see that an infinite bracelet partitions can be cut into k − 1 different ways with k dots in half. For

any k ≥ 3, a k dots bracelet partitions consist of k − 1 different half bracelet as shown in Fig.6.
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Figure .5: Infinite bracelet with k dots

Fu [12] denoted the number of k dots bracelet partitions for a positive integer n by Bk(n). The
generating function for Bk(n) is given by

∞∑
0

Bk(n)q
n =

(q2; q2)∞
(q; q)k∞(−qk; qk)∞

. (0.8)

He also proved the following congruences for k dots bracelet partitions:

(i) for n ≥ 0, k ≥ 3 if k = pr is a prime power,

Bk(2n+ 1) ≡ 0 (mod p),

(ii) for any k ≥ 3, s an integer between 1 and p − 1 such that 12s + 1 is a quadratic nonresidue

modulo p and any n ≥ 0, if p
∣∣k for some prime p ≥ 5, say k = pm, then

Bk(pn+ s) ≡ 0 (mod p),

(iii) for any n ≥ 0, k ≥ 3 even, say k = 2ml, where l is odd,

Bk(2n+ 1) ≡ 0 (mod 2m).
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Figure .6: k − 1 different half bracelet.

1 Review of literature

Hirschhorn and Sellers [11] provided a new proof of (0.7) as well as elementary proofs of congruences

modulo 2 for k = 1 and 2. Combinatorial proofs of (0.7) were given by Mortenson [17] and Fu

[12]. There are a number of other congruences for Δ2(n) in [7, 8, 18, 20]. Radu and Sellers [19]

found parity results for broken k-diamond partitions for some values of k. Paule and Radu [18]

conjectured four congruences for broken 3- and 5-diamond partitions. Two of those congruences

were proved by Xiong [25] and the remaining two were proved by Jameson [13]. Radu and Sellers

[20] found some parity results for broken 3-diamond partitions by using the theory of modular forms

and subsequently, Lin [15] found the elementary proofs of those parity results. Cui and Gu [10]
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and Wang [22] also found more parity results for broken 3- and 8-diamond partitions respectively.

Recently, Xia [23] found infinite families of congruences modulo 7 for broken 3-diamond partitions.

In [1], Ahmed and Baruah found parity results for broken 5-, 7- and 11-diamond partitions

by employing p-dissection of Ramanujan’s theta functions. Some of the results are given in the

following theorems.

Theorem 1.1. For any odd prime p, α ≥ 0 and if n is not a triangular number, then

Δ5

(
396 · p2α · n+

99 · p2α + 1

2

)
≡ 0 (mod 2).

Theorem 1.2. For all n ≥ 0 and α ≥ 0,

Δ7

(
8 · 52α+1 · n+ 8 · r · 52α +

16 · 52α + 2

3

)
≡ 0 (mod 2), (1.1)

for r = 3, 4, 8, 9, 13, and 14.

Theorem 1.3. For all n ≥ 0 and α ≥ 0,

Δ11(2 · 23α+1 · n+ 2 · r · 23α + 1) ≡ 0 (mod 2), (1.2)

for r = 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22.

Radu and Sellers [21] extended the set of congruences given by Fu. They proved that for all

n ≥ 0

B5(10n+ 7) ≡ 0 (mod 52),

B7(14n+ 11) ≡ 0 (mod 72),

and

B11(22n+ 21) ≡ 0 (mod 112).

More recently, Cui and Gu [9] found several congruences modulo 2 for 5 dots bracelet partitions

and congruences modulo p for any prime p ≥ 5 for k dots bracelet partitions. Xia and Yao [24]

also found several congruences modulo powers of 2 for 5 dots bracelet partitions. Recently, Yao

[27] established the generating functions of B9(An+B) modulo 4 for some values of A and B and

hence obtained congruences for modulo 2 and 4.

In [4], Ahmed and Baruah found several new congruences modulo 2 for 7 and 11 dots bracelet

partitions and also find congruences modulo p2 and p3 for k dots bracelet partitions for any prime

p > 3 by employing Ramanujan’s theta functions and by finding the binomial expansion of (q; q)p
n

∞
congruent modulo pn for n = 2 and n = 3 respectively. A few results are given below.

Theorem 1.4. For any prime p ≥ 5, α ≥ 0 and n ≥ 0, where n �= k(3k − 1)

2
, we have

B11

(
4 · p2α · n+

p2α + 5

6

)
≡ 0 (mod 2).
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Theorem 1.5. Let k = mpr, where m ∈ N, p ≥ 5 and r ≥ 2. Then for any positive integer n, we
have

Bk(pn+ �) ≡ 0 (mod p2),

where 1 ≤ � ≤ p − 1 and 12� + 1 is quadratic nonresidue modulo p, i.e., in Legendre symbol(
12�+ 1

p

)
= −1.

Theorem 1.6. Let k = mps, where m ∈ N, p ≥ 5 and s ≥ 3. Then for any positive integer n, we
have

Bk(pn+ j) ≡ 0 (mod p3),

where 1 ≤ j ≤ p − 1 and 12j + 1 is quadratic nonresidue modulo p, i.e., in Legendre symbol(
12j + 1

p

)
= −1.

Theorem 1.7. Let k = mps, where m ∈ N, p ≥ 5 and s ≥ 3. Then for any positive integer n, we
have

Bk

(
p(pn+ j) +

p2 − 1

12

)
≡ 0 (mod p2),

for j = 1, 2, . . . , p− 1.

2 Conclusion

We see that there is a scope of exploring the topics discussed above. In [21], Radu and Sellers used

the theory of modular forms to prove the congruences modulo 52, 72 and 112 for 5, 7 and 11 dots

bracelet partition functions. So it would be interesting to find some elementary way to prove those

congruences, and also to find Ramanujan like identity for these partition functions from which one

can generalised the congruences.
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1915â€“-1916; Reprinted by Chelsea, New York, 1960.

[17] Mortenson, E. On the broken 1-diamond partition, Int. J. Number Theory 4, 199–218, 2008.

[18] Paule P. & Radu, S. Infinite families of strange partition congruences for broken 2-diamonds,

Ramanujan J. 23, 409–416, 2010.

[19] Radu, S. & Sellers, J.A. An extensive analysis of the parity of broken 3-diamond partitions, J.
Number Theory 133, 3703–3716, 2013.

[20] Radu, S. & Sellers, J.A. Parity results for broken k-diamond partitions and (2k + 1)-cores,

Acta Arith. 146, 43–52, 2011.

[21] Radu, S. & Sellers, J.A. Congruences modulo squares of primes for Fu’s k dots bracelet parti-

tions, Int. J. Number Theory 9, 939–943, 2013.

[22] Wang Y. More parity results for broken 8-diamond partitions, Ramanujan J. DOI

10.1007/s11139–014–9660–x, 2015.

[23] Xia, E.X.W. Infinite families of congruences modulo 7 for broken 3-diamond partitions, Ra-
manujan J. DOI 10.1007/s11139–015–9692–x, 2015.

[24] Xia, E.X.W. & Yao, O.X.M. Congruences modulo powers of 2 for Fu’s 5 dots bracele partitions,

Bull. Aust. Math. Soc. 89, 360–372, 2014.



92 Zakir Ahmed

[25] Xiong, X. Two congruences involving Andrew’s-Paule’s broken 3-diamond partitions and 5-

diamond partitions, Proc. Japan Acad. Ser. A Math. Sci. 87, 65–68, 2011.

[26] Yao, O.X.M. New parity results for broken 11-diamond partitions, J. Number Theory 140,
267–276, 2014.

[27] Yao, O.X.M. Arithmetic properties for Fu’s 9 dots bracelet partitions, Int. J. Number Theory
11, 1063–1072, 2015.



Periodic sequences modulo m

Alexandre Laugier, Manjil P. Saikia
Lycée professionnel Tristan Corbière, 16 rue de Kervéguen - BP 17149, 29671 Morlaix cedex, France

Fakultät für Mathematik, Universität Wien, Vienna, Austria

email: laugier.alexandre@orange.fr, manjil@gonitsora.com

Abstract. We give a few remarks on the periodic sequence an =
(
n
x

)
(mod m) where x,m, n ∈ N,

which is periodic with minimal length of the period being

�(m,x) =

w∏
i=1

p
	logpi

x
+bi
i = m

w∏
i=1

p
	logpi

x

i ,

where m =
∏w

i=1 p
bi
i . We prove certain interesting properties of �(m,x) and derive a few other

results and congruences.

2010 Mathematical Sciences Classification. Primary 11B50; Secondary 11A07, 11B65.
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1 Introduction and Preliminaries

This paper deals with the periodicity of certain binomial coefficients which have previously been

studied by many mathematicians, [1] and [6] are some examples of results obtained in this direction.

The second author and Vogrinc [4] stated and proved the following theorem.

Theorem 1.1. A natural number p > 1 is a prime if and only if
(
n
p

)
− �np � is divisible by p for

every non-negative n, where n > p+ 1 and the symbols have their usual meanings.

The proof of Theorem 1.1 was completed by the present authors [2]. In this section we state

without proof the following results which we shall be referring in the coming sections. The proofs

can be found in [5].

Definition 1.2. A sequence (an) is said to be periodic modulo m with period k if there exists an
integer N > 0 such that for all n > N

an+k = an (modm).

In the following, we shall use usual periodicity with N = 1 unless otherwise mentioned.
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Theorem 1.3. The sequence (an) =
(
n
x

)
(mod m) is periodic, where x,m, n ∈ N.

Theorem 1.4. For a natural number m =
∏k

i=1 p
bi
i , the sequence an ≡

(
n
m

)
(mod m) has a period

of minimal length,

l(m) =

k∏
i=1

p
	logpi

m
+bi
i .

Theorem 1.4 was also derived in [3], however the motivation of that paper was quite different from

[5].

The following generalization of Theorem 1.1 was also proved in [2].

Theorem 1.5. For natural numbers n, k and a prime p we have the following(
n

pk

)
−
⌊
n

pk

⌋
≡ 0 (mod p).

We also fix the notation [[1, i]] for the set {1, 2, . . . , i} throughout the paper.

Definition 1.6. We define ordp(n) for n ∈ N to be the greatest exponent of p with p a prime in
the decomposition of n into prime factors,

ordp(n) = max
{
k ∈ N : pk|n

}
.

2 Results and Discussion

Remarks on Theorem 1.3

The integer n in Theorem 1.3 should be greater than x. Otherwise, the binomial coefficient
(
n
x

)
is

not defined. But, we can extend the definition of
(
n
x

)
to integer n such that 0 ≤ n < x by setting(

n
x

)
= 0 if 0 ≤ n < x. Nevertheless, notice that this extension is not necessary in order to prove

this theorem about periodic sequences.

The case where m = 0 is not possible since the sequence (
(
n
x

)
) is not periodic modulo 0 or is

not simply periodic. So, if x = m, x should be non-zero.

If x = 0, then we have

an ≡ an+1 ≡ . . . ≡ an+k ≡ 1 (modm)

for any integers n and k. So, if x = 0, the sequence (an) is periodic with minimal period equal to

1. We recall that if a sequence is periodic, a period of such a sequence is a non-zero integer.

In the following, we assume x ≥ 1.

Lemma 2.1. For n ≥ x+ 1
n−1∑
i=x

(
i

x

)
=

(
n

x+ 1

)
.

The proof of the above is not difficult and can be done using induction. We omit the details here.

Let k be the length of a period of sequence an ≡
(
n
x

)
(modm), meaning

(
n+k
x

)
≡
(
n
x

)
(modm).

Then we have,
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Lemma 2.2.
y+mk−1∑

j=y

(
j

x

)
≡ 0 (modm).

Proof. It is enough to notice the following

y+mk−1∑
j=y

(
j

x

)
=

m−1∑
i=0

y+k−1∑
j=y

(
j + ik

x

)
≡

m−1∑
i=0

r = mr ≡ 0 (mod m),

where
∑y+k−1

j=y

(
j+ik
x

)
≡ r (modm), for some r.

In [2], the authors mention without proof the following generalization of Theorem 1.4.

Theorem 2.3. For a natural number m =
∏w

i=1 p
bi
i , the sequence (an) such that an ≡

(
n
x

)
(modm)

has a period of minimal length

�(m,x) =
w∏
i=1

p
	logpi

x
+bi
i = m

w∏
i=1

p
	logpi

x

i .

The proof follows from the proof of Theorem 1.4 as given in [5] and also via Theorem 3 in [3]. An

easy corollary mentioned in [2] is proved below.

Corollary 2.4. For m =
∏w

i=1 p
bi
i we have

m2 ≤ �(m) ≤ mw+1.

Proof. We have

�(m) = m

w∏
i=1

p
	logpi

(m)

i ≥ m

w∏
i=1

p
	logpi

(p
bi
i
)


i = m
w∏
i=1

pbii

and

�(m) = m
w∏
i=1

p
	logpi

(m)

i ≤ m

w∏
i=1

p
logpi

(m)

i = mw+1.

Remark 2.5. Here w ≤ m− ϕ(m) where ϕ is the Euler totient function.

We now formally give the following definition.

Definition 2.6 (Minimal Period of a periodic sequence). The period of minimal length of a periodic
sequence (an) such that an ≡

(
n
x

)
(modm) with x ∈ N and m ∈ N, is the minimal non-zero natural

number �(m,x) such that for all positive integer n we have(
n+ �(m,x)

x

)
≡
(
n

x

)
(modm)

where it is understood that (
n

x

)
=

{
0, if 0 ≤ n < x
n!

x!(n−x)! , if n ≥ x.
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Remark 2.7. If x = 0, then �(m,x = 0) = 1 with m ∈ N.

From Definition 2.6(
�(m,x)

x

)
≡
(
�(m,x) + 1

x

)
≡ · · · ≡

(
�(m,x) + x− 1

x

)
≡ 0 (modm).

If x > 0 (x ∈ N), since any number is divisible by 1, we have(
x

x

)
≡
(
x+ 1

x

)
≡ · · · ≡

(
2x− 1

x

)
≡ 0 (mod 1).

Regarding the definition of �(m,x), since x is the least non-zero natural number which verifies this

property, we can set (x ∈ N) �(1, x) = 1.

The minimal period �(m) of a sequence (an) such that an ≡
(
n
m

)
(modm) with m ∈ N (see

Theorem 1.4) is given by �(m) = �(m,m).

Before we mention a few results we recall that loga x = ln x
ln a and ln(1 + x) =

∞∑
k=1

(−1)k+1

k xk.

Theorem 2.8.

�logp(x+ 1)� =
⌊
logp(x) +

1

x ln p

⌋
=

{
�logp(x)�, if x �= pc − 1;

�logp(x)�+ 1, if x = pc − 1,

with c ∈ N.

The proof is not difficult and is an easy calculus exercise, so we shall omit it here.

We now have the following

Corollary 2.9.

�(m,x+ 1) =

{
�(m,x), if x �= pc − 1 and p|m;

p �(m,x), if x = pc − 1 and p|m,

with x,m ∈ N.

The proof of the above corollary comes from Definition 2.6 and Theorem 2.8.

From Lemma 2.1
x+k−1∑
j=x

(
j

x

)
=

(
x+ k

x+ 1

)
.

The binomial cœfficient
(
x+k
x+1

)
is well defined for x ∈ N. Nevertheless, it was remarked in [5] that

we can extend possibly the definition of
(
n
x

)
(where it is implied that 0 ≤ x ≤ n) to negative n.

Below we discuss a few general results and give a few general comments.

Using Pascal’s rule, we can observe that(
x+ k

x+ 1

)
+

(
x+ k

x

)
=

(
x+ k + 1

x+ 1

)
.
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Since
(
x+k
x

)
≡
(
x
x

)
≡ 1 (modm), we obtain(

x+ k

x+ 1

)
+ 1 ≡

(
x+ k + 1

x+ 1

)
(modm). (2.1)

If x �= pc − 1 and p|m, then from the corollary above, we have k = �(m,x) = �(m,x+ 1). So(
x+ k + 1

x+ 1

)
≡
(
x+ 1

x+ 1

)
≡ 1 (modm),

and hence (
x+ �(m,x)

x+ 1

)
≡ 0 (modm).

If x = pc − 1 and p|m, then from the corollary above, we have pk = p �(m,x) = �(m,x + 1).

Now from Theorem 1.5 we have for x = pc − 1 and m = p a prime with c ∈ N,(
x+ k + 1

x+ 1

)
=

(
pc + �(p, pc − 1)

pc

)
≡
⌊
pc + �(p, pc − 1)

pc

⌋
≡
⌊
�(p, pc − 1)

pc

⌋
+ 1 (mod p). (2.2)

From (2.1) and (2.2) with x = pc − 1, k = �(m,x) and m = p a prime we have(
pc − 1 + �(p, pc − 1)

pc

)
≡
⌊
�(p, pc − 1)

pc

⌋
(mod p).

We have �(p, pc) = pc+1 = p �(p, pc−1), so it follows that �(p, pc−1) = pc and hence � �(p,p
c−1)

pc � = 1

for c ∈ N. Thus (
2pc − 1

pc

)
≡ 1 (mod p).

Thus, we now have the following result.

Theorem 2.10. For a prime p and a natural number c, we have(
2pc − 1

pc

)
≡ 1 (mod p).

In general, if x = pc − 1 and p|m, then since �logp(pc)� = c, and from Corollary 2.9 we have

�(m, pc − 1) =
�(m, pc)

p
= mpc−1

∏
i∈�1,k� | pi �=p

p
	logpi

(pc)

i .

If bi = ordpi
(m) = �logpi

(pc)� for i ∈ �1, k� | pi �= p and b = ordp(m), we have

�(m, pc − 1) =
�(m, pc)

p
= mpc−1

∏
i∈�1,k� | pi �=p

pbii = mpc−1 × m

pb
.

So, we deduce that

�(m, pc − 1) = m2 pc−b−1 =
m2

pb+1
pc,
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and

�(m, pc) = m2 pc−b.

In particular, when m = pb we have �(m = pb, pc− 1) = pb+c−1. And, we get �(m = p, pc− 1) =

pc. If c ≥ ordp(m) + 1, then �(m, pc − 1) is divisible by m2. If b = c, then �(m = pc, pc − 1) = m2

p .

Now from (2.2) and the preceeding paragraph we have,(
x+ k + 1

x+ 1

)
=

(
pc + �(m, pc − 1)

pc

)
≡
⌊
pc + �(m, pc − 1)

pc

⌋
≡
⌊
m2

pb+1

⌋
+ 1 (mod p).

From (2.1) with x = pc−1, k = �(m,x), and also from the fact that d ≡ e (modm) and p|m implies

that d ≡ e (mod p) (the converse is not always true), we have for p|m,(
pc − 1 +m2

c p
c−b−1

pc

)
≡
⌊
m2

c

pb+1

⌋
(mod p).

Remarks on Theorem 1.4

In the proof of Theorem 1.4, the authors in [5] first proved that a period of a sequence (an)

such that an ≡
(
n
m

)
(modm) with m =

∏k
i=1 p

bi
i , should be a multiple of the number �(m) =

m
∏k

i=1 p
	logpi

(m)

i . Afterwards, it is proved that �(m) represents really the minimal period of such

a sequence namely for every natural number n,(
n+ �(m)

m

)
≡
(
n

m

)
(modm).

For that, the authors notice that it suffices to prove∏m−1
i=0 (n− i)∏k
j=1 p

ϑpj
(m)

j

≡
∏m−1

i=0 (n+ �(m)− i)∏k
j=1 p

ϑpj
(m)

j

(modm),

where ϑpj
(m) is the pj-adic ordinal of m! defined as

ϑpj
(m) = ordpj

(m!) =
∑
l≥1

⌊
m

plj

⌋
=

	logpj
(m)
∑

l=1

⌊
m

plj

⌋
. (2.3)

Thus to prove Theorem 1.4 it is sufficient to show∏m
i=1(n− i+ 1)∏k
j=1 p

ϑpj
(m)

j

≡
∏m

i=1(n+ �(m)− i+ 1)∏k
j=1 p

ϑpj
(m)

j

(modm).

Then, the authors observe that among the numbers n, n − 1, . . . , n −m + 1, there are at least

�m
pl � that are divisible by pl for every positive integer l and any prime p which appears in the

prime factorization of m. In particular, if p divides m, we can notice that among the numbers

n, n− 1, . . . , n−m+1 (which represents m consecutive numbers), there are exactly �mp � =
m
p that

are divisible by p for any prime p which appears in the prime factorization of m.
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In the following, we define natural numbers cj(i) with i = 1, 2, . . . ,m and j = 1, 2, . . . , k by

ϑpj
(m) =

m∑
i=1

cj(i)

such that the cj(i)’s are functions of ordpj
(m − i + 1) namely cj(i) = ( ordpj

(n − i + 1)) and

i = 1, 2, . . . ,m, j = 1, 2, . . . , k. Also cj(i) = 0 if ordpj
(m− i+ 1) = 0.

We now state and prove the following result.

Theorem 2.11. If

max

{
cj(i)

∣∣∣∣∣ϑpj
(m) =

m∑
i=1

cj(i)

}
≤ �logpj

(m)�

then

ϑpj
(m) ≤ �m

pj
��logpj

(m)�.

(In general, the converse is not always true.) Therefore, a necessary but not sufficient condition in
order to satisfy the inequality ϑpj

(m) ≤ �mpj
��logpj

(m)�, is

cj(i) ≤ �logpj
(m)�, ∀ i ∈ �1,m�

with j = 1, 2, . . . , k.

Proof. The proof is immediate from (2.3) by noticing the following,

ordpj
(m!) =

	logpj
(m)
∑

l=1

⌊
m

plj

⌋
≤

	logpj
(m)
∑

l=1

⌊
m

pj

⌋
=

⌊
m

plj

⌋
�logpj

(m)�.

We can notice that this choice is not unique. But, we can observe that all the choices for the

cj(i)’s are equivalent in the sense that the equality ϑpj
(m) =

∑m
i=1 cj(i) should hold, meaning that

we can come back to a decomposition of the value of ϑpj
(m) into sum of positive numbers like the

cj(i)’s for which cj(i) ≤ �logpj
(m)� with i = 1, 2, . . . ,m. It turns out that this choice is suitable in

order to prove that �(m) is the minimal period of sequences (an) such that an ≡
(
n
m

)
(modm) with

m =
∏k

i=1 p
bi
i (with at least one non-zero bi).

Remark 2.12. We have obviously

max

{
cj(i)

∣∣∣∣∣ϑpj
(m) =

m∑
i=1

cj(i)

}
≥ 1.

The above discussion gives us a motivation to study the coefficients cj(i)’s. We hope to address

a few issues related to them and establish some interesting results in a forthcoming paper.
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On p-adic analogues of certain Ramanujan

type formulas for 1
π
: a brief survey
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Abstract. Van Hamme developed p-adic analogues of certain series representation of 1
π , known as

Ramanujan-type congruences. We shall discuss briefly different methods developed for the proofs of

p-adic analogues of Ramanujan-type congruences. The aim of this article is to encourage interested

readers to go through the works described briefly here.

Keywords. Ramanujan-type Supercongruences.

1 Introduction

In 1914, Ramanujan [13] listed 17 infinite series representations of 1
π , proved by J. Borwein and P.

Borwein [1], of the form
∞∑
k=0

A(k)xk =
δ

π
,

which gained popularity when they were used to calculate digits of π. In [5], Van Hamme developed

p-adic analogs of these series, known as Ramanujan type supercongruences, which related truncated

hypergeometric series to the values of p-adic gamma functions. We list them in Table 1 of the next

section, and then review developments of their proofs. Note that S(m) denotes the left column

corresponding sum truncated at k = m and in the last supercongruence (M.2) β(n) denotes the

nth Fourier co-efficient of the eta-product

f(z) := η(2z)4η(4z)4 = q
∏
n≥1

(1− q2n)4(1− q4n)4 =
∑
n≥1

β(n)qn,

where q = e2πiz.

101



102 Arjun Singh Chetry

2 Method of proofs of Van Hamme conjectures

• [(C.2), (H.2), (I.2)]: Providing p-adic analogs for the Ramanujan type supercongruences,

Van Hamme gave proofs of (C.2), (H.2), and (I.2) using various methods. For example, he

used a sequence of orthogonal polynomials pk(x) which satisfy a certain recurrence relation,

and then analyse these polynomials to yield (C.2).

• [(A.2)]: McCarthy and Osburn [9] proved (A.2) using Gaussian hypergeometric series,

properties of p-adic Gamma functions, and certain strange combinatorial identities. They

used the following result due to Osburn and Schneider [11] which states that for an odd prime

p and integer n ≥ 2,

−pnn+1Fn(λ) ≡ (−1)n+1

(
−1
p

)n+1

[p2X(p, λ, n) + pY (p, λ, n) + Z(p, λ, n)] (mod p3),

where
(

.
p

)
denotes the Legendre symbol and X(p, λ, n), Y (p, λ, n), Z(p, λ, n) are quantities

involving generalized harmonic sums H
(i)
n :=

∑n
j=1

1
ji . For p ≡ 1 (mod 4), Swisher [14]

improved (A.2), and proved that it holds in modulo p5 for p > 5.

• [(B.2)]: Three different methods have been used to prove (B.2). Mortenson [10] proved using

a technical evaluation of a quotient of Gamma functions, Zudilin [16] used the WZ-method

designed by Wilf and Zeilberger [15], and Long [8] used hypergeometric series identities and

evaluations.

• [(J.2)]: Long [8] also used a similar but more general method to prove (J.2). Motivated

by the techniques of McCarthy and Osburn [9], Mortenson [10], and Zudilin [16], she utilized

suitable hypergeometric series identities to obtain (J.2). She further gave a more general

result and proved several other supercongruences related to special valuations of truncated

hypergeometric series.

Theorem 2.1. Let p > 3 be a prime and r be a positive integer. Then

p−1
2∑

k=0

(4k + 1)

(
( 12 )

k!

)4

≡ pr (mod p3+r).

• [(D.2), (H.2)]: Recently, Long and Ramakrishna [7] have proved (D.2). They have used

relations between classical hypergeometric series and p-adic Gamma functions to strengthen

and extend (D.2) and (H.2) to additional primes. In fact, they extended (D.2) to modulo p6,
and proved that (H.2) holds modulo p3 when p ≡ 1 (mod 4).

• [(E.2), (F.2), (G.2), (L.2)]: The framework of Long [8] used in the proof of (B.2) is

utilized by many mathematicians to find similar congruences for truncated hypergeometric

series in terms of p-adic Gamma functions. Motivated by the work of Long [8], Swisher

[14] used identities of classical hypergeometric series to prove (E.2), (F.2), (G.2), and (L.2),

and extended some of them to additional primes. She further improved many results of
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Ramanujan Series Conjectures of van Hamme

(A.1)

∞∑
k=0

(4k + 1)(−1)k
( 1
2
)5k

k!5
=

2

Γ( 3
4
)4

(A.2) S
(
p−1
2

) ≡
⎧⎨
⎩

−p

Γp

(
3
4

)4 if p ≡ 1 (mod 4)

0 if p ≡ 3 (mod 4)
(mod p3)

(B.1)

∞∑
k=0

(4k + 1)(−1)k
( 1
2
)3k

k!3
=

2

π
=

2

Γ( 1
2
)2

(B.2) S
(
p−1
2

) ≡ −p

Γp( 1
2 )

2 (mod p3), p �= 2

(C.1)

∞∑
k=0

(4k + 1)
( 1
2
)4k

k!4
= ∞ (C.2) S

(
p−1
2

) ≡ p (mod p3), p �= 2

(D.1)

∞∑
k=0

(6k + 1)
( 1
3
)6k

k!6
=1.01226... (D.2) S

(
p−1
3

) ≡ −pΓp

(
1
3

)9
(mod p4), if p ≡ 1 (mod 6)

(E.1)

∞∑
k=0

(6k + 1)(−1)k
( 1
3
)3k

k!3
=

3
√
3

2π
=

3

Γ
(
1
3

)
Γ
(
2
3

) (E.2) S
(
p−1
3

) ≡ p (mod p3), if p ≡ 1 (mod 6)

(F.1)

∞∑
k=0

(8k + 1)(−1)k
( 1
4
)3k

k!3
=

2
√
2

π
=

4

Γ
(
1
4

)
Γ
(
3
4

) (F.2) S
(
p−1
4

) ≡ −p

Γp( 1
4 )Γp( 3

4 )
(mod p3), if p ≡ 1 (mod 4)

(G.1)

∞∑
k=0

(8k + 1)
( 1
4
)4k

k!4
=

2
√
2√

πΓ
(
3
4

)2 (G.2) S
(
p−1
4

) ≡ p
Γp( 1

2 )Γp( 1
4 )

Γp( 3
4 )

(mod p3), if p ≡ 1 (mod 4)

(H.1)

∞∑
k=0

( 1
2
)3k

k!3
=

π

Γ
(
3
4

)4 (H.2) S
(
p−1
2

) ≡
⎧⎨
⎩ −Γp

(
1

4

)4

if p ≡ 1 (mod 4)

0 if p ≡ 3 (mod 4)

(mod p2)

(I.1)

∞∑
k=0

1

k + 1

( 1
2
)2k

k!2
=

4

π
=

4

Γ
(
1
2

)2 (I.2) S
(
p−1
2

) ≡ 2p2 (mod p3), p �= 2

(J.1)

∞∑
k=0

6k + 1

4k
( 1
2
)3k

k!3
=

4

π
=

4

Γ
(
1
2

)2 (J.2) S
(
p−1
2

) ≡ −p

Γp( 1
2 )

2 (mod p4), p �= 2, 3

(K.1)

∞∑
k=0

42k + 5

64k
( 1
2
)3k

k!3
=

16

π
=

16

Γ
(
1
2

)2 (K.2) S
(
p−1
2

) ≡ −5p

Γp( 1
2 )

2 (mod p4), p �= 2

(L.1)

∞∑
k=0

6k + 1

8k
(−1)k

( 1
2
)3k

k!3
=

2
√
2

π
=

4

Γ
(
1
4

)
Γ
(
3
4

) (L.2) S
(
p−1
2

) ≡ −p

Γp( 1
4 )Γp( 3

4 )
(mod p3), p �= 2

(M.1)

∞∑
k=0

( 1
2
)4k

k!3
: unknown (M.2) S

(
p−1
2

) ≡ β(p) (mod p3), p �= 2

Table 2.1: The Van Hamme Conjectures

Van Hamme to modulo of higher prime powers. Using similar methods, He [3, 4] has also

independently verified the results for cases (E.2), (F.2), and (G.2). In [14], Swisher also

listed a number of Van Hamme-type congruence conjectures based on computational evidence

computed using Sage, some of which have been deduced by He [2].

Theorem 2.2. Let n be a positive integer and p be an odd prime with p ≡ −1 mod n. Then

4F3

[
1 + 1

2n ,
1
n ,

1
n ,

1
n

1
2n , 1, 1

1

]
p2−1

n

≡ p2 (mod p4).

• [(K.2)]: A new approach based on classical congruences and a WZ pair due to Guillera was

used by Osburn and Zudilin [12] in order to prove the congruence (K.2) completing proof of

all Van Hamme conjectures.

• [(M.2)]: Interestingly the conjecture (M.2) is related to the Apéry number supercongruence.

Using the fact that β(p) in (M.2) is related to a modular Calabi-Yau threefold, Kilbourn [6]

proved (M.2).
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3 Conclusion

As already described, the proofs of Van Hamme conjectures motivated mathematicians to explore

the relations similar to Van Hamme in higher powers of primes than expected by him. Several

other new results have also been found exploring connections of new hypergeometric series to p-
adic gamma functions.
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1 Introduction

The concept of controllability was introduced by an American mathematician and electrical engineer

R. Kalman in 1960. Kalman is popularly known for his greatest invention, Kalman filter, a series of

algorithms basically a branch of mathematical formulations that precisely gives an idea to estimate

the state of a system. The fundamental idea of Kalman filter is to extract less noisy data from a

given set of noisy data. It has a numerous application in the field of technology. Kalman filter has

a remarkable influence on sending the first human spaceflight from the Earth to the Moon. For

this work Kalman has received the prestigious National Medal of Science from the U.S. president

Barack Obama in 2009.

Moving to controllability, it is one of the broad concept in modern control system. It is a

process of driving a dynamical system to a particular state with the help of control input. If a

system is not controllable that means no input will be able to control that system. The general

concept of a system being controllable is that if we have system and want to make movements from

one point to another point within the system by taking help of input or outside source then our

system must be controllable. Depending upon our system, there are various approaches to study

of controllability. For example, the study of controllability for infinite dimensional system, we may

require more assumption compared to finite dimensional system.
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Basically our aim is to study about approximate controllability of a semilinear system. Amongst

the various approaches to the study of controllability of nonlinear systems, we use the fixed point

method for our purpose. In the fixed point method, the problem of controllability is transformed

to a fixed point problem for a nonlinear operator in a function space and then try to find out

conditions and assumptions needed to solve the problem.

We organise our article as, in the section 2, we state basic results from semigroup theory. In

the section 3, we briefly discuss controllability of finite dimensional space and infinite dimensional

space in both linear and nonlinear case. In the section 4, first we consider a semilinear system

in Banach Space then try to prove approximate controllability for that system using results from

previous sections.

2 Semigroup

Now we state some well known results from semigroup theory that will be required in our main

discussion of the article.

Semigroups of Bounded Linear Operators

Definition 2.1. A family of operators {T (t)}t≥0, T (t) : X → X is said to be a semigroup of
bounded linear operators on a complex Banach Space ( BS ) X if

(i) T (t) : X → X is a bounded linear operator, i.e. ‖T (t)‖X <∞.

(ii) T (t+ s)x = T (t)T (s)x, for each x ∈ X and t, s ≥ 0.

(iii) T (0) = I, where I is the identity operator on X.

Example 2.2. Consider, X = B ∪ C(R) with ‖ · ‖∞ norm.

Clearly, (X, ‖·‖∞) is a BS.

Define,

T (t) : X → X, as

T (t)f(x) = f(x+ t), t ≥ 0, x ∈ R.

Then T (t) defined as above on X is a semigroup.

Example 2.3. Consider, X = B ∪ C(R) with ‖ · ‖∞ norm.

Define,

T (t) : X → X for a fixed n ∈ N as

T (t)f(x) = e−ntf(x+ t), t ≥ 0, x ∈ R.

Then T (t) is a semigroup on X.
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Definition 2.4. A semigroup T (t) (0 ≤ t <∞) of bounded linear operators on a BS X is said to
be a strongly continuous semigroup(abbreviated C0 semigroup) of bounded linear operators if

lim
t↓0

T (t)x = x, for each x ∈ X.

Definition 2.5. Let {T (t)}t≥0 be a semigroup of bounded linear operators on X. The infinitesimal
generator A : D(A) ⊂ X → X of T (t) is defined by

Ax = lim
t↓0

T (t)x− x

t
, x ∈ D(A),

where D(A) is the domain of A and it is defined as

D(A) =
{
x ∈ X : lim

t↓0

T (t)x− x

t
exists

}
.

Example 2.6. We will find the infinitesimal generator of the semigroup T (t) defined in the Example
2.2. Let A be the infinitesimal generator of T (t). Then

A(f(x)) = lim
t↓0

T (t)f(x)− f(x)

t

= lim
t↓0

f(x+ t)− f(x)

t
=

d+

dt
f(x).

Hence,

D(A) = {f ∈ X| f is absolutely continuous and f ′ ∈ X}.

Remark 2.7. The infinitesimal generator A of a semigroup T (t) on X is a linear operator on X.

Example 2.8. Let A be a bounded linear operator on a BS X. Then for each t ≥ 0, T (t) = etA is
a C0 semigroup on X.

Theorem 2.9. [1] A linear operator A is the infinitesimal generator of a uniformly continuous
semigroup if and only if A is a bounded linear operator.

Theorem 2.10. [1] Let A be the infinitesimal generator of a C0 semigroup T (t) on X. If x ∈ D(A)
then T (t)x ∈ D(A) and

d

dt
T (t)x = AT (t)x = T (t)Ax.

Theorem 2.11. [1] Let T (t) and S(t) be two C0 semigroups of bounded linear operators with
infinitesimal generators A and B respectively. If A = B then T (t) = S(t) for t ≥ 0.

Corollary 2.12. If A is the infinitesimal generator of a C0 semigropup, then A is a closed linear
operator on D(A) and D(A) = X.

Theorem 2.13. [1] Let T (t) be a C0 semigroup. Then there exist constants ω ≥ 0 and M ≥ 1

such that
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‖T (t)‖ ≤Meωt for 0 ≤ t ≤ ∞.

Corollary 2.14. If T (t) is a C0 semigroup then for every x ∈ X, t �→ T (t)x is a continuous
function from R+

0 (the nonnegative real line) into X.

Definition 2.15. A C0 semigroup T (t) on X is said to be a uniformly bounded semigroup if ∃
M > 0 such that

‖T (t)‖ ≤M, ∀t ≥ 0.

Definition 2.16. A C0 semigroup T (t) on X is said to be a semigroup of contraction if

‖T (t)‖ ≤ 1, ∀ t ≥ 0.

Definition 2.17. The resolvent set ρ(A) for an operator A from X to X is defined as

ρ(A) = {λ ∈ C|A− λI : D(A) ⊂ X → X is bijective}.

And the resolvent operator R(λ : A) is defined by

R(λ : A) = (A− λI)−1.

Theorem 2.18. [1] A linear (unbounded) operator A is the infinitesimal generator of a C0 semi-
group of contractions T (t) on X iff

(i) A is closed and D(A) = X.

(ii) The resolvent set ρ(A) of A contains R+ and satisfies ‖R(λ : A)‖ ≤ 1

λ
, for every λ > 0.

Example 2.19. Let X be a separable Hilbert Space(abbreviated HS) with an orthonormal basis
{vn : n ≥ 1}. Consider a sequence of real numbers {λn : n ≥ 1} such that sup {λn : n ≥ 1} < ∞.
Define an operator A on X by

Ax =

∞∑
n=1

λn〈x, vn〉vn, x ∈ D(A),

with

D(A) =
{
x ∈ X :

∞∑
n=1

|λn〈x, vn〉|2 <∞
}
.

Then A generates a C0 semigroup on X.
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Semigroups of Compact Operators

Definition 2.20. A C0 semigroup T (t) is called compact for t > t0 if for every t > t0, T (t) is a
compact operator. In general T (t) is called compact if it is compact for t > 0.

Theorem 2.21. [1] Let T (t) be a C0 semigroup on X. If T (t) is compact for t > t0 then T (t) is
continuous in the uniform operator topology for t > t0.

Theorem 2.22. [1] Let A be the infinitesimal generator of a C0 semigroup T (t) on X. Then T (t)
is a compact semigroup iff T (t) is continuous in the uniform opertor topology for t > 0 and R(λ : A)
is compact for λ ∈ ρ(A).

Corollary 2.23. Let A be the infinitesimal generator of a C0 semigroup T (t) on X. If R(λ : A) is
compact for some λ ∈ ρ(A) and T (t) is continuous in the uniform operator topology for t > t0 then
T (t) is compact for t > t0.

Corollary 2.24. Let T (t) be a uniformly continuous semigroup. Then T (t) is a compact semigroup
iff R(λ : A) is compact for every λ ∈ ρ(A).

Example 2.25. Any linear bounded functional on a HS is a compact operator.

Remark 2.26. Adjoint of a compact operator is again a compact operator.

Example 2.27. Let X be a separable Hilbert Space with an orthonormal basis {vn : n ≥ 1}.
Consider a sequence nonnegative real numbers {λn : n ≥ 1} such that sup {λn : n ≥ 1} < ∞.
Define an operator A on X by

Ax =

∞∑
n=1

λn〈x, vn〉vn, x ∈ X.

Then A is a compact operator on X.

Example 2.28. The operator A :=
d2

dx2
with D(A) := {f ∈ C2[0, 1] : f ′(0) = 0 = f ′(1)} generates

a compact semigroup T (t) on X := C[0, 1].

3 Controllability

The problem of controllability is a mathematical formulation of the following situation. Con-

sider a system which evolves with respect to(abbreviated w.r.t.) time

ẋ = f(t, x, u)

where x is a description of the state of the system, ẋ represents derivative of x w.r.t. time t and
u is the control which can be chosen in a particular range.The standard problem of controllability

can be viewed as:

Given a finite time T > 0, an initial state x0 and the final state x1, is it possible to find a control
function u(depending on the time) such that solution of the system, starting from x0 and provided
with this function u reaches the state x1 at time T?
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Depending upon the system the controllability problem can be viewed in two different ways.

If the state of the system can be described by a finite numbers of degrees of freedom, we call the

problem finite dimensional. On the other hand if the state of the system can not be described by

finite numbers of degrees of freedom then we term the problem as infinite dimensional. In infinite

dimensional problem we use various results from semigroup theory. First we will discuss about

finite dimensional and after that we will discuss about infinite dimensional problem.

Finite Dimensional System

Linear System

Let us consider the linear system,

ẋ = Ax+Bu,

where x ∈ Rn is a state vector ; A ∈Mn×n.

And u ∈ Rm is a input vector ; B ∈Mn×m.

Definition 3.1. The pair (A,B) is said to be controllable if given a duration T > 0 and two
arbitrary points x0, x1 ∈ Rn, there exists a piecewise continuous function u : [0, T ]→ Rm such that
the solution of the given system x(t) generated by u with x(0) = x0 satisfies

x(T ) = x1.

In other words

x1 = eATx0 +

T∫
0

eA(T−t)Bu(t)dt.

Theorem 3.2. A necessary and sufficient condition for the pair (A,B) to be controllable is

rank C = rank
(
B|AB| · · · |An−1B

)
= n.

The matrix C =
(
B|AB| · · · |An−1B

)
is called Kalman’s controllability matrix of size (n× nm).

Example 3.3. The system ẋ1 = x2, ẋ2 = u is controllable.
This system can be written in the standard form as(

ẋ1

ẋ2

)
=

(
0 1

0 0

)(
x1

x2

)
+

(
0

1

)
u.

Here,

A =

(
0 1

0 0

)
, B =

(
0

1

)
.

Hence,

C =

(
0 1

1 0

)
and rank(C) = 2.

This implies that the given system is controllable.

Example 3.4. The system ẋ1 = u, ẋ2 = u is not controllable.
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Nonlinear System

Consider the non linear system

ẋ = f(x, u) (3.1)

with x ∈ X, n dimensional manifold and u ∈ Rm is a input vector.

We will convert the nonlinear system (3.1) to a linear form by introducing equilibrium point.

Let (x, u) be a equilibrium point of (3.1). Then the corresponding linear form of (3.1) about

the equilibrium point (x, u) is given by

ξ̇ = Aξ +Bν, (3.2)

where, A =
∂f

∂x
(x, u) and B =

∂f

∂u
(x, u).

Definition 3.5. The non linear system (3.1) is first order controllable around a equilibrium point
(x, u) if its linear system (3.2) is controllable at (x, u) i.e iff

rank
(
B|AB|. . .|An−1B

)
= n.

Infinite Dimensional System

In the case of infinite dimensional systems two different types of controllability can occur. These

are exact and approximate controllability. Exact controllability enables to steer the system to arbi-

trary final state while approximate controllability means that the system can be steered to arbitrary

small neighborhood of the final state. It is obvious that exact controllability is essentially stronger

notion than approximate controllability. In other words, exact controllability always implies ap-

proximate controllability. The converse statement is generally false. However, in the case of infinite

dimensional systems exact controllability appears rather exceptionally.

Consider the following linear system in a finite time interval I = [0, T ],

z′(t) = Az(t) +Bu(t), t ≥ 0,

z(0) = z0,

}
(3.3)

where A is the infinitesimal generator of a C0 semigroup S(t) on a HS Z. B : U → Z is a bounded
linear operator, where U is a HS. u ∈ L2(I, U) is considered as the control function. We denote

the system (3.3) as (A,B) for further use.

A mild solution z(·) of the linear system (3.3) is given by the solution of the following integral

equation,

z(t) = S(t)z0 +

t∫
0

S(t− s)Bu(s)ds.

Definition 3.6. Some important definitions are listed below by considering the linear system (3.3).
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(i) Controllability Map : The controllability map of the system (3.3) on I is the bounded linear

map ΓT : L2(I, U)→ Z defined by

ΓTu :=

T∫
0

S(T − s)Bu(s)ds.

(ii) Reachability Set : Let z(T, z0, u) be the state value at time T corresponding to the control u(·)
and initial value z0. Define,

R(T, z0, u) = {z(T, z0, u) : u(·) is a control, u ∈ L2(I, U)}.

The set R(T, z0, u) is known as reachability set.

(iii) Exact Controllability : The system (3.3) is exactly controllable on I if all points in Z can be
reached from origin at time T , (T > 0),

i.e. R(T, z0, u) = Z.

(iv) Approximate Controllability : The system (3.3) is approximately controllable on I if given an
arbitrary ε > 0 it is possible to steer from the origin to within a distance ε from all points in
the state space at time T .

i.e. R(T, z0, u) = Z.

(v) Controllability Gramian : The controllability gramian of the system (3.3) on I is defined by

ΓT
0 := ΓT (ΓT )∗.

Lemma 3.7. The controllability map and controllability gramian as defined in the previous defini-
tion satisfy the following :

(i) ΓT ∈ L
(
L2(I : U), Z

)
and Γt ∈ L

(
L2(I : U), L2(I : Z)

)
for 0 ≤ t ≤ T.

(ii) (ΓT )∗z(s) = B∗S∗(T − s)z on I.

(iii) ΓT
0 ∈ L(Z) and ΓT

0 z =
∫ T
0
S(t)BB∗S∗(t)zdt for z ∈ Z.

Lemma 3.8. The system (3.3) i.e the system (A,B) is exactly(approximately) controllable on I if
and only if (μI +A,B) is for any μ ∈ C.

Theorem 3.9. [2] The system (3.3) is exactly controllable on I if and only if any one of the
following conditions hold for some γ > 0 and all z ∈ Z:

(i) 〈ΓT
0 z, z〉 ≥ γ‖z‖2Z ,

(ii) ‖(ΓT )∗z‖22 :=
∫ T
0
‖(ΓT )∗z(t)‖2Udt ≥ γ‖z‖2Z ,

(iii)
∫ T
0
‖B∗S∗(t)z‖2Udt ≥ γ‖z‖2Z ,
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(iv) ker (ΓT )∗ = 0 and ran (ΓT )∗ is closed.

Theorem 3.10. [2] The system (3.3) is approximate controllable on I if and only if any one of
the following conditions hold :

(i) ΓT
0 > 0,

(ii) ker(ΓT )∗ = 0,

(iii) B∗S∗(t)z = 0 on I =⇒ z = 0.

4 Approximate Controllability of Semilinear Evolution Equations

In this section we state the work of [3]. Now we state some new properties of positive operator
required to prove the main result of Mahmudov[3]. For this we consider Z to be a reflexive BS,
Γ : Z∗ → Z is a symmetric operator and J : Z → Z∗ be the duality mapping given by the following

relations

‖J(z)‖ = ‖z‖, 〈J(z), z〉 = ‖z‖2 for all z ∈ Z.

Lemma 4.1. [3] Let Γ be a non-negative symmetric operator. Then there exists a HS H and an
operator A ∈ L(Z∗, H) such that A∗A = Γ and A(Z∗) is dense in H. Furthermore A∗(H) ⊂ Z and
Γ(Z∗) = A∗(H).

Lemma 4.2. [3] For every h ∈ Z and α > 0 the equation

αzα + ΓJ(zα) = αh (4.1)

has a unique solution zα = zα(h) = α(αI + ΓJ)−1(h) and

‖zα(h)‖ = ‖J(zα(h))‖ ≤ ‖h‖ (4.2)

Theorem 4.3. [3] Let Γ be a symmetric operator. Then the following three statements are equiv-
alent :

(i) Γ is a positive operator.

(ii) For all h ∈ Z, J(zα(h)) converges to zero as α → 0+ in the weak topology. where zα(h) =

α(αI + ΓJ)−1(h) is a solution of eqn (3.1).

(iii) For all h ∈ Z, zα(h) = α(αI + ΓJ)−1(h) converges to zero as α→ 0+ in the strong topology.

Theorem 4.4. [3] Let Γ be a positive symmetric operator and let h : Z → Z be a nonlinear
operator. Assume zα is a solution of the equation

αzα + ΓJ(zα) = αh(zα) (4.3)

and

‖h(zα)− h̄‖ → 0 as α→ 0+.

Then there exists a subsequence of the sequence {zα} converging strongly to zero as α→ 0+.
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Consider a semilinear evolution equation on a separable reflexive BS X in the following form

ẋ(t) = Ax(t) +Bu(t) + f(t, x(t), u(t)), t ∈ I = [0, T ],

x(0) = x0,

}
(4.4)

where f : I × X × U → X is a nonlinear operator. In this section we prove the approximate

controllability of the system (4.4) under some assumptions.

We consider the following assumptions :

(A1) X is a reflexive BS and U is a separable HS.

(A2) The linear operator A : D(A) ⊂ X → X generates a compact semigroup S(t), t > 0 on X.

(A3) The function f : I × X × U → X is continuous and there exist functions λi(·) ∈ L1(I,R+)

and φi(·) ∈ L1(X × U,R+), i = 1, 2, 3. . . such that

‖f(t, x, u)‖ ≤
q∑

i=1

λi(t)φi(x, u) for all (t, x, u) ∈ I ×X × U.

(A4) For all α > 0 limsupr→∞

(
r −

q∑
i=1

ci
α sup{φi(x, u) : ‖(x, u)‖ ≤ r}

)
=∞.

(A5) For every h ∈ X, zα(h) = α(αI +ΓT
0 J)

−1(h) converges to zero as α→ 0+ in strong topology.

Where,

LT
0 u :=

∫ T
0
S(T − s)Bu(s)ds,

ΓT
0 :=

∫ T
0
S(T − s)BB∗S∗(T − s)ds = LT

0 (L
T
0 )

∗,

and zα(h) is a solution of the equation

αzα + ΓT
0 J(zα) = αh,

where J is already defined.

(A6) The system (4.4) is approximate controllable if for all α > 0 there exists a pair of continuous

function (x, u)(·) ∈ C(I,X × U) such that

x(t) = S(t)x0 +

∫ t

0

S(t− s)[Bu(s) + f(s, x(s), u(s))]ds,

u(t) = B∗S∗(T − t)J
(
(αI + ΓT

0 J)
−1p(x, u)

)
,

⎫⎪⎬⎪⎭ (4.5)

where,

p(x, u) = xT − S(T )x0 −
∫ T

0

S(T − s)f(s, x(s), u(s))ds.
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Theorem 4.5. [3] Suppose that assumptions from (A1) to (A4) are satisfied. Then the operator
Pα, defined on C(I,X × U) as

Pα(x, u) = (z, v), (4.6)

where,

v(t)(= vα(t)) = B∗S∗(T − t)J((αI + ΓT
0 J)

−1p(x, u)), (4.7)

z(t)(= zα(t)) = S(t)x0 +

∫ t

0

S(t− s)[Bvα(s) + f(s, x(s), u(s))]ds, (4.8)

p(x, u) = xT − S(T )x0 −
∫ T

0

S(T − s)f(s, x(s), u(s))ds,

has a fixed point for 0 < α ≤ 1.

Lemma 4.6. [3] If

p = xT − S(T )x0 −
∫ T

0

S(T − s)f(s)ds

with f(·) ∈ L1(I,X) and if uα(·) ∈ L2(I,X) is a control defined by

uα(t) = B∗S∗(T − t)J
(
(αI + ΓT

0 J)
−1p
)
, (4.9)

then

z(T ;x0, uα)− xT = −α(αI + ΓT
0 J)

−1p, (4.10)

and

z(t;x0, uα) = S(t)x0 +

∫ t

0

S(t− s)f(s)ds+ Γt
0S

∗(T − t)J
(
(αI + ΓT

0 J)
−1p
)
, (4.11)

where,

z(t;x0, u) = S(t)x0 +

∫ t

0

S(t− s)[Bu(s) + f(s)]ds. (4.12)

Theorem 4.7. [3] Let the function f : I ×X × U → X be continuous and uniformly bounded i.e.
there exists a constant L > 0 such that

‖f(t, x, u)‖ ≤ L, for all (t, x, u) ∈ I ×X × U,

and the assumptions (A1), (A2) and (A5) are satisfied then the system (4.4) is approximate con-
trollable.
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5 Conclusion

We may further study on this field by taking Mahmudov’s work as a primary source. Next we

can study the approximate controllability of quasilinear differential equations, as the quasilinear

differential equations are frequently used in the traffic flow problems, continuum mechanics and it

has many more applications in science and technology. This will generalize the existing results in

this field.
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1 Introduction

The weighted shift operators are a vital class of linear operators that have been quite extensively

studied till date. These interesting class of operators are of fundamental importance in the branch

of operator theory. Some adequate references for weighted shifts are [5], [10], [11], [12], and [15].

Here, in this paper, we shall study weighted shift operators with a graph theoretic approach. An

adequate reference in this regard is [6]. To begin with, we give a brief introduction of the weighted

shift operator on a Hilbert space. Shift operators are basically of two types: the unilateral shift

and the bilateral shift.

Let us consider a separable Hilbert space K and let {en}∞n=0 be an orthonormal basis of K.

Then the unilateral shift is the operator that maps each orthonormal basis vector into a scalar

multiple of the next basis vector. Let us consider a sequence of scalars {αn}∞n=0. If U : H → H
such that

Uen = αnen+1 forn = 0, 1, 2, . . .

then U is called the unilateral shift operator on H and the αn’s are called the weights of the shift

operator.

119
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Its adjoint operator is given by

U∗e0 = 0, and U∗en = ᾱn−1en−1 forn = 1, 2, 3, . . .

Here, U∗ is termed as the backward unilateral shift operator. When αn = 1 for all n = 0, 1, 2, . . . ,
the the weighted unilateral shift is called the unweighted unilateral shift.

To understand the shifts better, let us consider the sequence space �2+(K).

�2+(K) = K ⊕K ⊕K ⊕ . . .

is the space of all sequences x = {xn}∞n=0 of vectors xn ∈ K. �2+(K) is a Hilbert space with respect

to the norm given by

‖x‖2 =

∞∑
n=0

‖xn‖2 <∞.

The unilateral unweighted shift U+ on �2+(K) is defined as

U+(x0, x1, . . . ) = (0, x0, x1, . . . ).

The multiplicity of U+ is the cardinal number n = dimK. It follows immediately that the adjoint

of U+ is given by

U∗
+(x0, x1, . . . ) = (x1, x2, . . . )

and U∗
+ is called the backward shift. Two unilateral shift operators are unitarily equivalent if and

only if they have the same multiplicity.

Again, let �2(K) =
∑∞

−∞⊕K be the Hilbert space of two-way sequences x = (. . . , x−1, [x0], x1, . . . )
of vectors fromK with ‖x‖2 =

∑∞
n=−∞ ‖xn‖2 <∞, and let the bilateral shift U on �2(K) be defined

as

U(. . . , x−1, [x0], x1, . . . ) = (. . . , x−2, [x−1], x0, . . . ).

Here, [·] denotes the central 0th entry of x = (. . . , x−1, [x0], x1, . . . ).
The multiplicity of U is dimK. Just like unilateral shifts, two bilateral shifts are also unitarily

equivalent if and only if they have the same multiplicity.

Motivated by the theory of unweighted unilateral and bilateral shifts, the class of operators

namely weighted shift operators is defined on the Hilbert space �2(K). Here, we refer to the

definition given by Shields in [15], where he considers weighted shifts on �2(K) for dimK = 1. For

a bounded sequence of scalars {βn}n∈Z, the weighted unilateral shift S is defined on �2+(K) as

S(x0, x1, . . . ) = (0, β0x0, β1x1, . . . );

and the bilateral weighted shift W is defined on �2(K) as

W (. . . , x−1, [x0], x1, . . . ) = (. . . , β−2x−2, [β−1x−1], β0x0, . . . ).
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In 1967, N. K. Nikolskii [10] introduced operator weighted shifts as a generalization of scalar

weighted shifts. For a sequence of uniformly bounded operators {An}n∈N0 on K, the operator T
on �2+(K), defined as

T (x0, x1, . . . ) = (0, A0x0, A1x1, . . . )

is called the unilateral operator weighted shift with weights {An}n∈N0 . A bilateral operator weighted

shift is similarly defined on �2(K).

2 Weighted shifts on graphs

Graph theoretical concepts have time and again been incorporated in the branch of operator the-

ory. One such interesting and significant work is the study of weighted shift on directed trees. A

significant paper in this context is [6]. In [6], the weighted shift taken into consideration is mainly

motivated by two concepts: the weighted shift operator on a Hilbert space and the adjacency op-

erator of a directed graph. Finite undirected graphs induce symmetric adjacency matrices while

in case of infinite graphs, these matrices have to be replaced by adjacency operators. Adequate

references for the study of adjacent operators are [9, 13, 14].

The notion of an adjacency operator for an infinite undirected graph was first introduced by

Mohar in [9]. A locally finite countable graph G = (V,E) is considered where V = {vi : i ∈ N} is

the set of vertices and E is the set of edges. N is the set of natural numbers. Then the associated

(infinite) adjacency matrix A(G) = [aij ] is defined as the matrix where the (i, j)th entry aij is equal
to the number of edges between the vertices vi and vj .

Mohar interpreted this adjacency matrix A(G) with a linear operator on the Hilbert space �2

(or �2(C), where C is the set of complex numbers). Recall that �2 is the Hilbert space of all square

summable complex sequences; i.e, it contains all the sequences of the form (xi : i ∈ N) such that∑
i∈N |xi|2 is convergent. Let {ek = δik : i ∈ N} be an orthonormal basis of �2.

The adjacency matrix A(G) of the locally finite undirected graph G can then be interpreted as

the linear operator A on �2 such that

Aek = (aik : i ∈ N), or equivalently

〈Aek, ei〉 = aik.

Since the graph G is locally finite, that means it has a finite number of edges adjacent to each

vertex, so the operator A is well defined. Hence, Aek is in �2 and can be linearly extended to a

dense subspace of �2 spanned by the basis vectors {ek : k ∈ N}. We denote this subspace as H0 and

A0 be the corresponding linear operator on H0. Since, the graph under consideration is undirected,

so the operator A0 is symmetric. Hence, A0 is closable. The closure A = A0 of the linear operator

A0 is called the adjacency operator of the undirected graph G. Hence, we arrive at the following

definition:

Definition 2.1. [9] The adjacency operator is a closed symmetric transformation with domain
D(A), for which the following holds:

〈Ax, ei〉 =
∑
j∈N

aijxj , i ∈ N, x ∈ D(A).
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We shall next discuss the work done by Sasaoka in his paper [13], where the adjacency operator

is defined on directed graphs. It should be noted that unlike in the case of undirected graphs, the

adjacency operator here need not be self adjoint even if it is bounded. We begin with some basic

definitions and notations on directed graphs.

Definition 2.2. [13] A directed graph G = (V,E, δ+, δ−) is a system of sets V , E and maps
δ± : E −→ V . Here,
• Elements of V are the vertices.
• Elements of E are the edges.
• For an edge e ∈ E, δ+(e) is an initial vertex and δ−(e) is a terminal vertex.
• For each vertex v ∈ V , the outdegree, d+(v) = cardinality of the set {e ∈ E : δ+(e) = v}
• the indegree, d−(v) = cardinality of the set {e ∈ E : δ−(e) = v}.
• The valency (or degree), d(v) = d+(v) + d−(v).

Definition 2.3. [13] If the valency d(v) is finite for every v ∈ V , then the graph G is a locally
finite graph. A graph has bounded valency if there is a constant M > 0 such that d(v) ≤M for any
vertex v ∈ V .

For an edge e ∈ E, let δ+(e) = u and δ−(e) = v. Then u is called a server of v and v is called a

receiver of u. If a vertex w is a server of two vertices u and v, then w is called the common server

of u and v. Similarly w is called a common receiver of u and v, if w is a receiver of u and v . We

denote the number of all common servers of u and v by d+(u, v) and common receivers as d−(u, v)
.

Definition 2.4. [13] We define the following:
D+(v) = u ∈ V : u is a receiver of v,
D−(v) = u ∈ V : u is a server of v,
D+(u, v) = w ∈ V : w is a common receiver ofu, v, and
D−(u, v) = w ∈ V : w is a common server ofu, v.

Sasaoka considered the infinite directed graph G to be locally finite and without multiple edges

between any two vertices. We proceed to define the adjacency operator on such a graph G. We

consider a Hilbert space H = l2(V ) with the canonical basis {ev : v ∈ V } defined as ev(u) = δv,u for

u, v ∈ V . Let H0 be the linear span of the set {ev : v ∈ V }. Let A0 and B0 be two linear operators

on H with the dense domains Dom(A0) = H0 = Dom(B0). For an element
∑

v∈V xvev ∈ H0, the

operators A0 and B0 are defined as

A0(
∑
v∈V

xvev) =
∑
u∈V

∑
v∈D−(u)

xveu, and

B0(
∑
v∈V

xvev) =
∑
u∈V

∑
v∈D+(u)

xveu.

The operators A0 and B0 are well-defined since the graph G is locally finite. A0 and B0 are

closable and A∗
0 ⊃ B0, and B∗

0 ⊃ A0.

Definition 2.5. [13] Let A = A(G) be a closed operator with the domain Dom(A) given by

Dom(A) = {x =
∑
v∈V

xvev ∈ H :
∑
u∈V

|
∑

v∈D−(u)

xv|2 <∞}
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Then, for x ∈ Dom(A), the operator A = A(G) defined as

Ax =
∑
u∈V

∑
v∈D−(u)

xveu

is called the adjacency operator of the directed graph G .

Similarly, a closed operator B with the domain Dom(B) is defined as

Bx =
∑
u∈V

∑
v∈D+(u)

xveu,

where

Dom(B) = {x =
∑
v∈V

xvev ∈ H :
∑
u∈V

|
∑

v∈D+(u)

xv|2 <∞}.

Sasaoka proved in his paper that the adjacency operator is bounded if and only if the graph

G has bounded valency. He also proved several significant results on the adjacency operator in

relation with the graph G.

Motivated by [13], Jablon’ski, Jung and Stochel introduced weighted shifts on directed trees

in [6]. The weighted shift considered here can be interpreted as the generalization of classical

weighted shifts and adjacency matrices. The results in [6] aim to show the similarity between clas-

sical weighted shifts and the shifts defined on trees, and also point out few advantages of the later

over the former in some cases. We start with some preliminary definitions and notations given in [6]:

Let G = (V,E) be a directed graph, where V is a non empty set of vertices and E is the set of

directed edges, i.e, E is a subset of V × V \ {(v, v) : v ∈ V }. Let the set Ẽ represents the set of

undirected edges i.e,

Ẽ = {{u, v} ⊆ V : (u, v) ∈ E or (v, u) ∈ E}.

For a non empty subset W of V , the graph GW = (W, (W ×W )∩E) is called a directed subgraph

of G.

Definition 2.6. [6] A directed graph G is said to be connected if for any two distinct vertices u and
v of G, there exists a finite sequence v1, v2, . . . , vn of vertices of G, where n > 2 such that u = v1,
{vj , vj+1} ∈ Ẽ for all j = 1, 2, . . . , n− 1, and vn = v. Such a sequence is called an undirected path
joining u and v.

Definition 2.7. [6] • For a vertex u in V , a member of the set Chi(u) is called a child of u, where

Chi(u) = {v ∈ V : (u, v) ∈ E}, u ∈ V.

• If for a given vertex u ∈ V , there exists a unique vertex v ∈ V such that (v, u) ∈ E, then u is
said to have a parent v and then v is written as par(u).
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• A finite sequence {uj}nj=1 of distinct vertices is said to be a circuit of G if n ≥ 2, (uj , uj+1) ∈ E
for all j = 1, 2, . . . , n− 1, and (un, u1) ∈ E.

• A vertex v of G is called a root of G, i.e, v ∈ Root(G), if there is no vertex u ∈ G such that
(u, v) ∈ E. Clearly, we can have more than one of such roots. If there is only one root, then we
write the unique root as root(G).

In fact the directed graph G has a unique root if it is connected and each of its vertices other

than the root has a parent. With this result, we arrive at the definition of a directed tree:

Definition 2.8. [6] A directed graph T is said to be a directed tree if it has no circuits and satisfies
the following two conditions:
(i) T is a connected graph
(ii) Each vertex other than the root has a parent.

A subgraph of T is a subtree of T if it itself is a directed tree. Note that, a directed tree T may

not necessarily have a root, but if it does, the root has to be unique. Since the set V of vertices

may also be finite, so there is a possibility of a finite directed tree. In such cases, the root is always

unique. We denote V 0 as the set of vertices without the roots,i.e, V 0 = V \Root(G). The following

proposition shows a decomposition of the set V 0:

Proposition 2.9. [6] If T is a directed tree, then for any u, v ∈ V , u �= v we must have Chi(u) ∩
Chi(v) = φ, and V 0 =

⊔
u∈V Chi(u).

For any subset W of V , we can write Chi(W ) =
∑

v∈W Chi(v) in view of the above proposition.

We define the following:

(i)Chi(0)(W ) = W,

(ii)Chi(n+1)(W ) = Chi(Chi(n)(W )), n = 0, 1, . . . ,

(iii)Descendents ofW,Des(W ) =

∞⋃
n=0

Chi(n)(W ).

Since by definition the directed tree T has no circuits, so the sets Chi(n)(u), n − 0, 1, 2 . . . are

pairwise disjoint. Hence we can decompose the set Des(u) as

Des(u) =
∞⊔

n=0

Chi(n)(u), u ∈ V.

It is very interesting to see that if the directed tree T has a root, then the whole set of vertices V
can be obtained as

V = Des(root).

The following result shows us a decomposition of the directed tree T :

Proposition 2.10. [6] Let T be a directed tree and u ∈ V . Then T can be decomposed into two
different subtrees TDes(u) and TV \Des(u), which are given as
(i) TDes(u) is a directed tree with root u.
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(ii) TV \Des(u) is a directed tree, provided V \Des(u) �= φ. If T has a root, then so does TV \Des(u)

and in fact root(T ) = root(TV \Des(u)).
Moreover, if Des(u) = Des(v), then we must have u = v.

We now move on to discuss the weighted shift that is defined on such a directed tree. Let us

consider �2(V ) as the space of all square summable complex functions on the set of vertices V of

the directed tree T = (V,E). �2(V ) is a Hilbert space with the standard inner product

〈f, g〉 =
∑
u∈V

f(u)g(u).

The set {eu}u∈V is an orthonormal basis of �2(V ), where the element eu ∈ �2(V ) is given by

eu(v) :=

{
1, if u = v;
0, otherwise.

Let εV be the linear span of the set {eu}u∈V . In fact, �2(V ) is a reproducing kernel Hilbert

space with the reproducing property given by

f(u) = 〈f, eu〉

for f ∈ �2(V ) and u ∈ V .

Definition 2.11. [6] Given λ = {λv}v∈V 0 , a family of complex numbers, we define the operator
Sλ in �2(V ) by

D(Sλ) = {f ∈ �2(V ) : ΛT f ∈ �2(V )}
Sλf = ΛT f, f ∈ D(Sλ),

where ΛT is the mapping defined on functions f : V −→ C by

(ΛT f)v :=

{
λv.f(par(v)), if v ∈ V 0;
0, if v = root.

The operator Sλ is called a weighted shift on the directed tree T with weights {λv}v∈V 0 .

Proposition 2.12. [6] Let Sλ be a weighted shift on a directed tree T . Then following are some
of the important assertions that hold for Sλ:
(i) Sλ is a closed operator.
(ii) D(Sλ) = {f ∈ �2(V ) :

∑
u∈V (

∑
v∈Chi(u) |λv|2)|f(u)|2 <∞}.

(iii) ‖f‖2Sλ
=
∑

u∈V (1 +
∑

v∈Chi(u) |λv|2)|f(u)|2 for all f ∈ D(Sλ).

(iv) eu ∈ D(Sλ) if and only if
∑

v∈Chi(u) |λv|2 is finite. If eu ∈ D(Sλ), then

Sλeu =
∑

v∈Chi(u)

λvev, and

‖Sλeu‖2 =
∑

v∈Chi(u)

|λv|2.

(v) Sλ is densely defined if and only if {eu : u ∈ V } ⊆ D(Sλ).
(vi) Sλ = Sλ|εV if Sλ is densely defined.
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For a densely defined weighted shift Sλ, the linear space εV is an invariant subspace only when

the set Chi(u) is infinite for at least one vertex u, and all the weights {λv}v∈Chi(u) are non zero.

However, another condition for εV to be invariant is that the set Chi(u) must be finite for every

vertex u in V .

Now we shall see how exactly we can compare a classical weighted shift on a Hilbert space with

a weighted shift on a directed tree. Let us consider the directed tree (Z+, {n, n + 1} : n ∈ Z+),

where Z+ is the set of non negative integers. Then for n ∈ Z+, Chi(n) = n + 1. So, from (iv) of

the above proposition, we get

Sλen =
∑

v∈Chi(n)

λvev

⇒Sλen = λn+1en+1,

which is nothing but the unilateral weighted shift operator. This may slightly differ from the

usual notation Sλen = λnen+1, but this does not cause any problem to the work. Also, for each

n ∈ Z+, en ∈ D(Sλ) since
∑

v∈Chi(n) |λv|2 = |λn+1|2. Hence, any weighted shift Sλ on the directed

tree (Z+, {n, n + 1} : n ∈ Z+) is densely defined. Also here the linear span of {en : n ∈ Z+} is a

core of Sλ and so it is justified that Sλ is a unilateral classical weighted shift.

Similarly by considering the directed tree (Z, {n, n+ 1} : n ∈ Z), where Z is the set of integers,

we can arrive at the definition of a classical bilateral weighted shift.

The weighted shift Sλ can be decomposed as an orthogonal sum of two weighted shifts on two

different trees. This can be stated as the following proposition:

Proposition 2.13. [6] Let Sλ be a weighted shift on a directed tree T with weights {λv}v∈V 0 .
Assume that λu = 0 for some u ∈ V 0. Then

Sλ = Sλ→(u) ⊕ Sλ←(u).

Here, Sλ→(u) is a weighted shift on the directed tree TDes(u) with weights λ→(u) := {λv}v∈Des(u)\{u},
and Sλ←(u) is a weighted shift on the directed tree TV \Des(u) with weights λ←(u) := {λv}v∈V \(Des(u)∪root(T )).

The injectivity of the weighted shift Sλ depends mainly of the directed tree T on which it is

defined. Interestingly, it may happen that Sλ is an injective map even when some of the weights

{λv}v∈V 0 are taken to be zero. But for a classical weighted shift to be injective, each of the weights

must always be non zero. The following result gives us a necessary and sufficient condition for Sλ

to be injective.

Proposition 2.14. [6] Let Sλ be a weighted shift on a directed tree T with weights {λv}v∈V 0 . Then
the following conditions are equivalent:
(i) Sλ is injective,
(ii) T is leafless and

∑
v∈Chi(u) |λv|2 > 0 for every u ∈ V . By a leafless tree, we mean that each

u ∈ V must have at least one child, i.e, the set Chi(u) must be non empty.

The following proposition gives us a simple condition for the weighted shift Sλ to be bounded.
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Proposition 2.15. [6] Let Sλ be a weighted shift on a directed tree T with weights {λv}v∈V 0 . Then
the following conditions are equivalent:
(i) D(Sλ) = �2(V ),
(ii) Sλ is a bounded linear operator on �2(V ),
(iii) supu∈V

∑
v∈Chi(u) |λv|2 <∞.

If Sλ is bounded, then its norm is given by

‖Sλ‖ = sup
u∈V

‖Sλeu‖ = sup
u∈V

√ ∑
v∈Chi(u)

|λv|2.

Another advantage of the weighted shift on trees over classical weighted shifts is that it is

possible to construct a reducible injective and bounded weighted shift on a directed tree with root.

But classical weighted shifts are never reducible. Also, we know that if U is a classical weighted

shift with weights {wn}n∈N0 , then U is unitarily equivalent to a weighted shift operator with weight

sequence {|wn|}n∈N0 . We have an analogous result in the case of Sλ.

Theorem 2.16. [6] A weighted shift Sλ on a directed tree T with weights λ = {λv}v∈V 0 is unitarily
equivalent to the weighted shift S|λ| on T with weights |λ| = {|λv|}v∈V 0 .

Next we shall discuss about the adjoint operator of the weighted shift Sλ, and also show that

Sλ can be interpreted as the adjoint of a classical weighted shift.

Proposition 2.17. [6] Let Sλ be a densely defined weighted shift on a directed tree T with weights
λ = {λv}v∈V 0 . Then the following assertions hold:
(i)
∑

v∈Chi(u) |λvf(v)| <∞ for all u ∈ V and f ∈ �2(V ),

(ii) εV ∈ D(S∗
λ) and

S∗
λeu :=

{
λu.epar(u), if u ∈ V 0;
0, if u = root.

(iii) (S∗
λf)(u) =

∑
v∈Chi(u) λvf(v) for all u ∈ V and f ∈ D(S∗

λ),

(iv) D(S∗
λ) = {f ∈ �2(V ) :

∑
u∈V |

∑
v∈Chi(u) λvf(v)|2 <∞}.

(v) ‖f‖2S∗
λ
=
∑

u∈V (|f(u)|2 + |
∑

v∈Chi(u) λvf(v)|2) for all f ∈ D(S∗
λ),

(vi) �2(Chi(u)) ⊆ D(S∗
λ) for all u ∈ V ,

(v) S∗
λ = S∗

λ|εV .

Unlike in the case of Sλ, εV is always an invariant subspace for the adjoint S∗
λ of a densely

defined weighted shift Sλ. Finally, we shall show that the adjoint of a unilateral classical weighted

shift is in fact a weighted shift that is defined on a specific directed tree. Let us consider the

subtree (Z−, {n, n + 1} : n ∈ Z−) of the directed tree (Z, {n, n + 1} : n ∈ Z). Clearly the subtree

(Z−, {n, n+ 1} : n ∈ Z−) has no root and has only one leaf 0 (A vertex u ∈ V is called a leaf if it

has no child,i.e, Chi(u) = φ). Let Sλ be a weighted shift on (Z−, {n, n+1} : n ∈ Z−) with weights

λ = {λ−n}∞n=0. In view of Proposition 2.12, Sλ is densely defined, and is given by

Sλe−n = λ−(n−1)e−(n−1) for alln = 1, 2, . . . , andSλe0 = 0.

The assertion (vi) of the Proposition 2.12 ensures that Sλ can be interpreted as the adjoint of the

classical unilateral weighted shift with weights {λ̄−(n−1)}∞n=1. Again, we know that the classical
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unilateral weighted shift is an isometry if the weight sequence is considered as the constant se-

quence of 1. In the present case, Sλ defined on directed tree T is an isometry on �2(V ) if and only

if
∑

v∈Chi(u) |λv|2 = 1 for all u ∈ V .

Hence, we have seen in [6] as how the structure of a graph helps in the study of the weighted

shift Sλ. In the same paper, several other significant properties of the weighted shift Sλ such as

hyponormality, cohyponormality and subnormality have been discussed in sufficient detail. For

further knowledge in this context, one may refer to the following: [1, 2, 3, 4].

3 Conclusion

It is very interesting to see the shift operator evolve with a completely different approach while

incorporating concepts of graph theory in the process. One can always compare the various prop-

erties of the classical weighted shift on a Hilbert space with those of the weighted shift defined on

a directed tree. Till date, various significant work has been done in this context. However, there is

always a scope of further research in this area.
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Creation Operators on Segalâ€“Bargmann Spaces, Complex Anal. Oper. Theory, 10(7), (2016):

1427-1452.

[9] Mohar, B. The spectrum of an infinite graph, Linear Algebra Appl., 48 (1982), 245-256.

[10] Nikol’skii, N. K. Invariant subspaces of weighted shift operators. Math. USSR. Sbornik,
3(2):159–176, 1967.



Recent Trends in Mathematical Sciences 129

[11] Nikol’skii, N. K. Treatise on the Shift Operator: spectral function theory, Springer-Verlag,

Berlin, 1985.

[12] Sarason, D. Invariant Subspaces. Topics in Operator Theory, Math surveys, 13:1-47, 1974.

[13] Sasaoka, H. The adjacency operator of an infinite directed graph, Kyoto University depart-
mental bulletin paper, 743: 93-103,(1991).

[14] Sasaoka, H., Fujii, M. and Watatani, Y. Adjacency Operators of Infinite Directed Graphs,

Math. Japonica, 34, (1989), 727-735.

[15] Shields, A. L. Weighted shift operators and analytic function theory. Topics in operator theory,
Math surveys, 13:49–128, 1974.





Estimation of Value at Risk, Expected

Shortfall and Median Shortfall

Suparna Biswas
Indian Statistical Institute, Chennai, India

email: suparnabsws4@gmail.com

Abstract. Value-at-risk (VaR), Expected shortfall (ES) and Median shortfall (MS) are the well

known risk measures to estimate the market risk. VaR is essentially an extreme quantile and is a

popular risk measure to estimate market risk. However there are several demerits of VaR. ES is the

mean of the conditional return distribution, given the event that the return is less than the VaR

and MS is the median of the conditional return distribution, given the event that the return is less

than the VaR. Estimation of these risk measures is an important problem in finance. In this paper

we discuss various estimators of these risk measures and compare their performance using Monte

Carlo simulation.

2010 Mathematical Sciences Classification. Primary 11B39, 11D99; Secondary 11B83.

Keywords. Value-at-risk, expected shortfall, median shortfall

1 Introduction

Risk measures have become important tools in finance and actuarial science. A risk measure is a

function that assigns real numbers to the possible outcomes of a random financial quantity, such

as an insurance claim or loss of a portfolio (see [10]). Market risk of a portfolio refers to the

loss incurred due to random fluctuations in the value of risky assets in the portfolio over a period

of time. Value-at-risk (VaR) is a popular measure of market risk associated with an asset or a

portfolio of assets. Its use was recommended by the Basel Committee in 1996 (Basel Committee on

Banking Supervision (1996)) and also in the latest proposed Basel II standards (Basel Committee

on Banking Supervision (2003)). It is defined as follows.

Let, X be a random variable representing a loss of some financial position. For 0 < p < 1, the

(1− p)th quantile of the distribution with distribution function F is defined as

Qp = inf{x : F (x) ≥ (1− p)},
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the 100(1 − p) percent VaR, denoted by V aRp, is the negative (1 − p)th quantile of the marginal

distribution of X, i.e.

V aRp = −Qp. (1.1)

Hence estimation of V aRp essentially reduce to the problem of estimation of the quantile Qp.

Artzner et al. introduced the concept of coherent risk measures (see [4, 5]). They argued

that a risk measure should satisfy four desirable properties: monotonicity, subadditivity, positive

homogeneity and translation invariance. Artzner et al. [7] pointed out that VaR is not a coherent

risk measure because it does not satisfy the subadditivity condition. This implies that the risk

of a portfolio, when measured by VaR, can be larger than the sum of the standalone risks of its

components.

To construct a risk measure that is both coherent and easy to compute and estimate, the

expected shortfall (ES) was proposed and discussed by Artzner et al. [5]. For a given level p, the
shortfall distribution is given by the cumulative distribution function Θp defined by:

Θp(x) = P{X ≤ x|X > V aRp}

This distribution is just the conditional loss distribution i.e the truncated distribution, given that

the loss exceeds the VaR at the same level. The mean of this distribution is called the expected

shortfall, and is denoted by ESp. Mathematically, it can be written as

ESp = −1

p

∫ ∞

V aRp

xdF (x)

Among all coherent measures, expected shortfall is regarded as a good supplement to VaR, as it is

closely linked to VaR (see [1, 2, 3]).

So and Wong introduced the risk measure called Median Shortfall (MS) (see [31]). By definition,

MS is the median of the conditional return distribution, given that the return is less than the VaR

level (see [31]). Let Θp denote the distribution function of this conditional return distribution. It

is defined as follows

Θp(x) = P{X ≤ x|X > Qp}.

The median of this distribution is called the Median Shortfall, denoted by MSp (see [31]). The MS

can be written as

MSp = − inf{x : Θp(x) ≥ 0.5} = −Q0.5p. (1.2)

From the definition it is clear that median shortfall is nothing but the value-at-risk at some higher

level. As we know that there are some disadvantages of mean with respect to median, the perfor-

mance of the Median Shortfall is compared with that of Expected Shortfall.

In this paper we discuss several estimators of VaR, ES and MS and compare their performance

using Monte Carlo simulations. In section 2 we give a brief literature review. In section 3 we review

the estimators of VaR and MS. In section 4 we review the estimators of ES. In section 5 we discuss

about the simulation study and in section 6 is the conclusion.
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2 Literature Review

As VaR is essentially an extreme quantile, thus the VaR estimation reduces to the problem of

estimation of extreme quantile. The methods of quantile estimation fall into two broad categories:

parametric and non-parametric techniques. In parametric technique we specify a distribution of

the returns. But in non-parametric technique no such assumption is imposed on the underlying

distribution of the returns.

Early estimators of VaR are based on parametric models for the return distribution F , for in-

stance, Gaussian or t-distribution. More sophisticated parametric approach based on autoregressive

conditional heteroskedastic (ARCH) or generalized ARCH (GARCH) models has been developed

under the trademarks of RiskMetrics, KMV and Creditmetrics. The advantages of the parametric

approaches lay in their easy interpretation. But they are model dependent and are subject to errors

of model misspecification.

Again in actuarial science and financial risk management extreme quantile focuses only on

downside risks, practitioners understood that their aim should be on fitting tails of distributions,

i.e. skewed and heavy tailed distributions. In Gencay and Selcuk [18], Matthys and Beirlant [22],

McNeil [23], McNeil et al. [24], Embrechts et al. [17] and Charpentier and Oulidi [12], authors use

the Extreme Value Theory (EVT) or exactly the peaks over threshold (POT) method for modeling

tails of loss distributions and for estimating extreme quantiles. But this approach leads to particular

parametric models, as from Pickands-Balkema-de Haan theorem [9] tails should be either Pareto

type or exponential type. Again a misspecification of the model can induce substantial errors.

So in order to have a “distribution free” nature, non-parametric models are used to estimate

extreme quantiles. A traditional estimator of the (1− p)th quantile of a random variable X is the

pth sample quantile. The main drawback to sample quantiles is that they experience a substantial

lack of efficiency, caused by the variability of individual order statistics. The efficiency of the sample

quantile can be improved by considering linear combinations of order statistics, that is, L-estimators

(see [30]). Another approach is based on numerical inversion techniques of nonparametric kernel

estimators of the cdf as the quantile function is simply the inverse of the cumulative distribution

function which was discussed by Azzalini [8]. In the kernel method the main problem lies with the

selection of bandwidth. Now with a proper choice of bandwidth one can expect upto 15% improve

in efficiency over the usual sample quantile. Chen and Tang [13], Azzalini [8] and Bowman [11]

provide some choice of bandwidth parameter.

But Artzner et al. [6] showed that VaR has several shortcomings and introduced a new measure

of risk referred to as the ES. Several estimators of ES, both parametric and non-parametric are

reviewed by Nadarajah et al. [26]. They mentioned that the empirical estimator is the best method

for estimating ES. From the definitions we can see that both VaR and ES are closely related to

each other. In spite of overcoming the shortcomings of VaR, ES has its own shortcomings.

We know that expected shortfall is the mean of the truncated distribution and mean has a lot

of disadvantages. As we know that mean is very susceptible to outliers, while the median is not

affected by outliers. So we use MS which is the median of the truncated distribution. In the next

section we review the quantile estimators.
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3 Quantile estimators

Quantile estimation based on Extreme Value Theory

Estimation of quantiles for values of p close to 1 by extreme value theory is related to Pickands-

Balkema-de Haan Theorem (see [9]). If X1, X2,. . .,Xn are independent and identically distributed

with distribution function F and X(1) ≤ X(2) ≤ · · · ≤ X(n) denotes the associated order statistics

then the limiting distribution of an affine transformation is X(n) is either Fréchet, Weibull or

Gumbel. The shape of the underlying distribution F fully characterizes the limiting distribution

(called max-domain of attraction). The limiting distribution is characterized by a tail index ξ, using
the Generalized Extreme Value representation (GEV). If ξ > 0 the limiting distribution is a Fréchet

distribution, if ξ = 0 the limiting distribution is a Gumbel distribution and if ξ < 0 the limiting

distribution is a Weibull distribution. Pickands-Balkema-de Haan Theorem claims that if F is in

the max-domain of attraction of the Generalized Extreme Value (GEV) distribution of parameter

ξ, for u large enough, X − u given that X > u, has a Generalized Pareto distribution with tail

parameter ξ and with some shape parameter β(u).

Based on this result we discuss an estimator called GPD estimator. If ξ > 0, and if ξ̂ and β̂
denote the maximum likelihood estimates of the Pareto distribution, based on the pseudo sample

{X(n−k+1) −X(n−k), . . .,X(n) −X(n−k)}. then

EVp = X(n−k) +
β̂k

ξ̂k

([n
k
(1− p)

](−ξ̂k)

− 1

)
When n

k ≈ 1, this estimator is called the GPD estimator (see [12]). The main idea is to estimate a

parametric model on subsample, taking into account only the largest values so that the asymptotic

properties remain in the tail when considering the subsample. Another main constraint is to have a

sample large enough, because we need many observations in order to use the maximum-likelihood

technique. An important issue is the choice of threshold u, i.e. of k (see [20]).

Non-parametric technique

In non-parametric quantile estimation, we have traditional estimator called the sample quantile.

Let I(·) be the indicator function, with I(S) equal to 0 or 1 according as the statement S is false

or true. If F̂ (x) = 1
n

∑n
i=1 I(Xi ≤ x) i.e. F̂ is the empirical distribution function, Q̂p equals

−X([n(1−p)]+1), where �x� denotes the integral part of x. It is the pth sample quantile (we call it

SQp).

Kernel method for estimating quantile

Various authors like Nadaraya [25], Azzalini [8], Gouriéroux et al. [19] and Chen and Tang [13]

have discussed about the kernel method for estimating quantile.

Definition 3.1. The kernel based estimate of F , for sample {X1, X2,. . .,Xn} is

F̃n(x) =
1

n

n∑
i=1

∫ t

−∞
w

(
x−Xi

b

)
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where w is the kernel function and b is the bandwidth. With a proper choice of bandwidth one

can expect upto 15% improve in efficiency over the usual sample quantile. Chen and Tang [13],

Azzalini [8] and Bowman [11] provide some choice of bandwidth parameter. Chen and Tang [13]

have obtained the asymptotic bias, variance and the rate of almost sure convergence of their version

of Q̂p, under the assumption that {Xt} is a stationary geometric α−mixing process. The authors

suggested the following choice for the optimal value of b,

bopt1 =

{
2f3(Qp)bk

σ4
k(f

(1)(Qp))2

}1/3

n−1/3,

where bk =
∫
uw(u)G(u)du, and σ2

k =
∫
u2w(u)du. G(·) is the distribution function of the dis-

tribution with density w. bopt1 involves unknown constants Qp, f and its derivative f (1) at Qp.

Chen and Tang [13] suggested to approximate Qp in bopt1 by the corresponding sample quantile.

The authors suggested to approximate f and f (1) by the density and the first derivative of the

generalized Pareto distribution. We denote the Chen and Tang s’ quantile estimator by C-Tp. We

even propose a new method for data based selection of bandwidth. We use the Bootstrap method

to estimate our proposed bandwidth. Azzalini [8] proposed the following bandwidth bopt2 = Kn−c,

where K = 1.5σ, n is the sample size and c = 1/3. We denote the Azzalini’s quantile estimator

by Ap. Bowman [11] proposed the following bandwidth bopt3 = Kn−c, where K = 3.9σ, n is the

sample size and c = 1/3. We denote the Bowman’s quantile estimator by Bp.

L-statistics for estimating quantile

“An obvious way of improving the efficiency of sample quantiles is to reduce this variability by

forming a weighted average of all the order statistics, using an appropriate weight function” [30].

These estimators are commonly called L estimators. A popular class of L estimators is called the

kernel quantile estimators.

Definition 3.2. The kernel quantile estimator is given by

SMp = −
n∑

i=1

[∫ i
n

i−1
n

w

(
t− p

b

)
dt

]
X(i)

where w is the kernel and b is the bandwidth. Several estimators have been considered, based

on this expression, with different choice of w and b. Parzen [28], Padgett [27] and Sheather and

Marron [30] have considered Gaussian kernels.

4 Non-parametric methods for estimating expected shortfall

In this section we review the non parametric estimators of ES.

Empirical estimator

Let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order statistics in ascending order corresponding to the

original data X1, X2,. . .,Xn. The empirical estimator suggests to estimate expected shortfall by

Empp = −
∑n

i=[np] X(i)

n− [np]
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where [x] denotes the largest integer not greater than X. This method is considered as the best

method of estimation for expected shortfall (see [26]).

Brazauskas et al.’s estimator

Let us recall that expected shortfall is defined as

ESp = −1

p

∫ 1

1−p

Q(u)du.

Let F̂ denote the empirical cumulative distribution function of X1, · · · , Xn and F̂−1 be its quantile

function. Brazauskas et al. [10] defined an empirical estimator of ESp as follows

ÊSp = −1

p

∫ 1

1−p

F̂−1(u)du.

Under the assumption that X1, · · · , Xn are i.i.d. with E|X1| < ∞, ÊSp converges to ESp almost

surely as n is increased (see [? ]).

Yamai and Yoshiba’s estimator

Yamai and Yoshiba [32] defined the following estimator of ESp

ESp,β = − 1

n(β − 1 + p)

nβ∑
i=[n(1−p)]

X(i),

where β is a positive constant such that X(1) < X(2) < .... < X[n(1−p)] < .... < X(nβ) < .... < X(n).

Kernel method

Let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order statistics in ascending corresponding to the

financial returns X1, X2,. . .,Xn. Let K(.) denote a symmetric kernel, b a suitable bandwidth,

Kb(u) =
1
hK(uh ), A(x) =

∫ x
−∞ K(u)du and Ab(u) = A(ub ). Yu et al. [33] suggest various formulas

for kernel estimation of expected shortfall and one of them is

ESkerp = − 1

np

n∑
i=1

XiAb(q̂(p)−Xi),

where

q̂(p) =

n∑
i=1

[∫ 1
n

i− 1
n

Kb(t− p)dt

]
X(i).

An alternative is to obtain q̂p as the solution of

1

n

n∑
i=1

Ab(x− xi) = p.

Comprehensive discussions of this kernel method are available in Scaillet [29] and Chen [14].
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Jadhav et al.’s estimator

Jadhav et al. [21] propose several modifications of the empirical estimator for expected shortfall.

One proposed estimator is

Jap =

∑[np1+a]+1
i=0 Xi

[np1+a] + 2
,

where i = [(n+1)p′(i)], p
′
(i) = p− ip

[np]+1 , i = 0, 1, . . . , [np1+a] + 1 and a is a constant taking values

in [0, 0.1].

5 Simulation study

Comparing quantile estimators

In this section we study the performance of seven quantile estimators viz: EVp, SQp, C−Tp, Ap, Bp

and SMp. We use the mean square error (MSE) of each of the mentioned estimators as a measure

of performance. The mean square error is defined as

MSE = E[(Q̂(X, p)−Q)2]

≈ 1

m

m∑
k=1

(Q̂(k)
n (p)−Q(p))2

where Q̂
(k)
n (p) is the quantile obtained on the kth simulated sample and n is the sample size. The

sample sizes considered are n = 30, 100, 250, 500, 1000 and 2500. Computations have been obtained

by computing m = 500 samples from each distribution. We ran our simulations for distributions like

standard Normal, standard Cauchy, Weibull, Lognormal and GPD. We even ran our simulations

for dependent cases. The models considered are

1. AR(1) model: Xt = aXt−1 +
√
1− a2Zt, Zt

iid∼N(0, 1) and a = 0.08.

2. Log model: log(Xt) = alog(Xt−1) +
√
1− a2Zt, Zt

iid∼N(0, 1) and a = 0.08.

In case of kernel estimators the MSE value depends on the bandwidth b. In the kernel estimator

we use the Epanechnikov kernel which is defined as w(z) = 3
4 (1− z2). Our bandwidth choices are

bopt1, bopt2 and bopt3. Algorithm of quantile estimation using kernel estimator is given by:

• Given X1, X2,. . .,Xn.

• Bandwidths chosen as mentioned above.

• Estimate the cumulative distribution function of the Xi’s as F̂ (x) using the kernel estimator.

• Using uniroot method, we find q as the solution of F̃ (q) = p.

In the L-estimator we use the Epanechnikov kernel which is defined as w(z) = 3
4 (1 − z2). Here

we use our proposed bandwidth which we obtain by using Bootstrap method for estimating the

quantile. Algorithm of quantile estimation using L-estimator is given by:

• Given X1, X2,. . .,Xn.
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• Bandwidth estimated using Bootstrap method.

• Epanechnikov kernel is considered in the kernel quantile estimator.

• Quantile is estimated using the L-estimator SMp.

In the GPD estimator, main issue is the choice of threshold k, tail parameter ξ and shape parameter

β. There is a proposal given by Huisman et al. [20] about the choice of k which is given as n
2 ,

where n is the sample size. But we choose k as n − (n2 )
p, where n is the sample size and p is the

probability, because n
k ≈ 1. We estimate the ξ̂ and β̂ by fitting the generalized Pareto distribution

(gPd) to the dataset using the asymptotic maximum likelihood technique. Algorithm of quantile

estimation using GPD estimator is given by:

• Given X1, X2,. . .,Xn.

• k is chosen as n− (n2 )
p, where n is the sample size and p is the probability.

• We estimate ξ̂ and β̂ by fitting generalized Pareto distribution (gPd) to the dataset using

asymptotic maximum likelihood method.

• Considering the chosen k, ξ̂ and β̂, we obtain the quantile using the GPD estimator.

The results of the mean square error (MSE) of the quantile estimators at 99% are reported in Table

5.1 and 5.2 which are based on 500 simulations.

Comparing ES estimators

We compare the performance of five ES estimators viz: Empp, ÊSp, ESp,β , ESkerp and Jap. As a

measure of performance we use the MSE of each of the mentioned estimators. We ran simulations

using five different underlying distribution functions such as Generalized Pareto distribution (GPD)

with shape parameter ξ = 0.3, standard Normal, standard Lognormal, Weibull and Pareto(1,2)

distributions. We also consider the following models in our simulation study:-

1. AR(1) model: Xt = aXt−1 +
√
1− a2Zt, Zt

iid∼N(0, 1) and a = 0.08.

2. Log model: log(Xt) = alog(Xt−1) +
√
1− a2Zt, Zt

iid∼N(0, 1) and a = 0.08.

The sample sizes considered are n = 30, 100, 250, 500, 1000 and 2500. Computations have been

obtained by computing m = 500 samples from each distribution. The results of the mean square

error (MSE) of the different estimators at 99% are reported in Table 5.3 and 5.4 which are based

on 500 simulations.

From Table 5.1 and 5.2 we observe that no such quantile estimator outperforms the sample

quantile. Also from Table 5.3 and 5.4 we observe that no such ES estimators outperforms the

empirical estimator of ES. Based on our simulation study in Table 5 and 6 we have compared the

MSE of ES and MS, using the empirical estimator. The ES and MS is estimated at 99%. MS at 99%

means VaR at 99.5% We know that mean as a measure of central tendency has some disadvantages,

it is highly sensitive to extreme values. But median is not affected by extreme values. So we try to

consider median shortfall, which is nothing but the VaR at some other level greater than p. From

Table 5.5 and 5.6 we observe that MS outperforms the ES for all the sample sizes.
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Table 5.1: MSE estimates for different quantile estimators at 99%

Distn n SQp Ap Bp SMp EVp C − Tp

N(0,1) 30 0.3021 0.2184 0.4524 1.2346 3.1943 0.2731
100 0.1098 0.1079 0.1296 0.5184 1.3312 0.0941
250 0.0466 0.0399 0.0493 0.2134 0.8602 0.0455
500 0.0249 0.0227 0.0260 0.0725 0.6640 0.0212
1000 0.0121 0.0115 0.0139 0.0155 0.5835 0.0117
2500 0.0047 0.0043 0.0051 0.0057 0.5301 0.0045

Cauchy(0,1) 30 83453.04 83471.4 83506.04 197611.2 2843.124 52708.34
100 103909.7 191934.4 191988.7 32376.8 508.3795 272921.6
250 2000.355 2000.265 1999.861 919.5306 242.7881 983.2474
500 393.8452 450.9489 450.1569 309.2897 122.3019 364.5123
1000 123.0716 127.8621 126.6533 149.7986 73.7751 124.7571
2500 37.7746 38.1889 38.0892 90.0211 44.1427 51.2886

Lognormal 30 24.0283 23.5209 22.3499 31.5986 46.6218 42.4659
100 22.1430 43.7863 42.8084 16.1018 15.9679 19.4004
250 5.0801 5.0616 4.9318 7.0553 6.6736 5.2996
500 2.9080 3.0660 2.8873 2.9093 3.2179 2.5558
1000 1.3373 1.3704 1.3360 1.4703 1.6222 1.3297
2500 0.5046 0.5075 0.4890 0.5563 0.7259 0.5030

GPD 30 29543.91 29552.17 29563.12 34697.15 9802.844 199071.8
100 94346.04 149446.6 148943.6 85121.86 4803.303 857537.9
250 5540.409 5540.32 5539.736 6038.39 2528.732 6292.111
500 3265.157 3797.957 3802.449 97614.15 1435.522 2713.922
1000 1111.158 1073.496 1073.576 1055.028 834.8196 1024.88
2500 409.2309 410.8855 411.9501 589.811 602.0519 420.2394

Weibull 30 179.8249 178.2669 174.4697 177.5919 227.031 117.4224
100 161.9309 175.907 176.389 100.4599 84.6018 131.3887
250 41.6090 41.5518 41.1869 51.1034 36.5847 30.3875
500 19.1634 19.5869 19.4033 26.6500 20.4856 18.4952
1000 9.6057 9.7702 9.5471 8.9786 11.5562 8.1685
2500 4.0845 4.1515 4.0562 3.3065 8.8549 3.1510
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Table 5.2: MSE estimates for different quantile estimators at 99% for dependency cases

Distribution n SQp Ap Bp SMp EVp C − Tp

AR(1) 30 0.8797 0.7442 0.6660 2.3555 3.8995 0.7503
100 0.2497 0.3163 0.3121 0.8671 1.6562 0.2671
250 0.1363 0.1465 0.1419 0.3265 1.0337 0.1193
500 0.0836 0.0828 0.0778 0.1258 0.7538 0.0792
1000 0.0400 0.0398 0.0391 0.0362 0.6492 0.0447
2500 0.0155 0.0151 0.0149 0.0157 0.5418 0.0140

Logmodel 30 63.3921 63.6665 64.8024 46.5482 68.6584 41.3238
100 52.6390 61.2865 57.5780 25.6734 58.4928 35.8576
250 24.1053 24.0814 23.9264 14.2551 19.3403 14.2426
500 12.2285 11.9068 12.0002 7.8204 8.6404 8.3246
1000 4.3711 4.3882 4.3281 3.5867 4.5402 5.2485
2500 1.7293 1.7288 1.7211 1.6212 1.9388 1.4905
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Table 5.3: MSE estimates for different estimators of ES at 99%

Distn n Empp ÊSp ESkerp Jap ESp,β

N(0,1) 30 0.8582 1.4433 10.3639 10.2223 2.7447
100 0.0915 0.6825 10.3060 10.0816 0.8325
250 0.1393 0.4230 10.3335 10.0704 1.0598
500 0.0525 0.3199 10.3333 10.0360 0.4096
1000 0.0642 0.2567 10.3398 10.0276 0.3468
2500 0.1187 0.2107 10.3416 10.0418 0.3053

Lognormal 30 60.7349 119.1243 272.7406 392.8992 156.4774
100 139.3741 68.3744 274.0812 386.275 69.6180
250 26.0945 35.9818 274.7235 385.815 53.1004
500 16.0188 23.9902 274.9052 384.7502 25.3831
1000 10.0323 16.5716 274.9979 384.576 17.3348
2500 7.9684 11.9737 275.0282 384.5493 12.0218

GPD(ξ = 0.3) 30 83.0172 112.795 241.6518 336.8144 131.3027
100 282.9646 81.7959 242.844 331.0379 81.2056
250 46.9397 38.4159 242.8988 331.3232 52.1702
500 24.5304 21.4161 243.1578 330.2429 23.124728
1000 10.4128 12.6812 243.2042 330.1392 12.4728
2500 5.1543 7.0818 243.2517 330.091 6.4008

Weibull 30 315.3055 418.2291 771.0513 1001.842 346.3367
100 528.9571 217.5887 776.9215 981.0576 128.5861
250 116.4806 81.9190 777.8451 981.708 80.1105
500 71.2799 38.5271 777.9547 978.828 42.4353
1000 30.5209 21.1050 778.355 978.2527 25.1131
2500 12.5626 8.7534 778.208 978.429 14.8905

Pareto(1,2) 30 160.6576 195.7786 308.7192 464.0539 212.6719
100 253.623 109.8344 311.3657 455.067 109.5845
250 72.3071 67.6917 311.7332 454.8516 82.3083
500 69.7520 49.3579 311.8147 453.8522 56.3831
1000 38.6420 30.1201 311.9519 453.6058 35.5263
2500 19.7902 15.1763 311.9264 453.617 18.6157
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Table 5.4: MSE estimates for different estimators of ES at 99% for dependency case

Distn n Empp ÊSp ESkerp Jap ESp,β

AR(1)a = 0.08 30 0.9134 1.6618 3.8391 10.2154 2.7452
100 2.7173 0.8318 2.6944 10.0879 0.8344
250 0.1075 0.5563 2.6654 10.0715 1.0675
500 0.0580 0.4334 2.2207 10.0381 0.4128
1000 0.1194 0.3665 2.3129 10.0273 0.3480
2500 0.2023 0.3175 2.2797 10.0419 0.3059

Logmodel a = 0.08 30 92.9383 134.9161 284.3368 390.6363 156.4489
100 133.9765 70.0918 273.754 387.5749 69.9788
250 28.2944 42.0117 273.4392 385.8003 55.3510
500 16.0799 27.6974 268.7672 384.9032 26.0661
1000 10.7926 19.5709 269.7539 384.5136 17.5372
2500 8.9290 13.6947 269.3914 384.4788 12.0309



Recent Trends in Mathematical Sciences 143

Table 5.5: MSE estimated using empirical estimator of ES and MS

Distribution n ES at 99%(empirical) VaR at 99.5%(empirical)

N(0,1) 30 0.8582 0.5684
100 3.0915 0.1984
250 0.1393 0.0780
500 0.0525 0.0505
1000 0.0642 0.0223
2500 0.1187 0.0088

Lognormal 30 60.7349 56.4495
100 139.3741 73.7233
250 26.0645 15.1754
500 16.0188 10.9944
1000 10.0323 4.2147
2500 7.9684 1.6079

GPD(ξ = 0.3) 30 83.0172 59.3554
100 282.9646 190.8207
250 46.9397 24.1594
500 24.5304 9.8929
1000 10.4128 4.2903
2500 5.1542 1.8361

Weibull 30 315.3055 261.652
100 528.9571 222.8295
250 116.4806 75.8402
500 71.2799 51.1641
1000 30.5209 22.3390
2500 12.5626 8.1194

Pareto(1,2) 30 160.6576 195.4856
100 253.623 232.422
250 72.3071 58.2088
500 69.7520 31.5482
1000 38.6420 11.3928
2500 19.7902 3.6221
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Table 5.6: MSE estimated using empirical estimator of ES and MS for dependency case

Distribution n ES at 99%(empirical) VaR at 99.5%(empirical)

AR(1)a = 0.08 30 0.9134 0.5280
100 2.7173 0.1988
250 0.1075 0.0803
500 0.0580 0.0425
1000 0.1194 0.0201
2500 0.2023 0.0091

Logmodel a = 0.08 30 92.9383 53.2411
100 133.9765 82.6992
250 28.2944 16.2666
500 16.0799 8.2956
1000 10.7926 3.6681
2500 8.9290 1.6351
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6 Conclusion

In this paper we have discussed about the estimators of VaR, ES and MS and compared the

performance of the estimators using the Monte Carlo simulations. From the simulation study it is

observed that no such estimator is seen to outperform the empirical estimators of VaR, MS and

ES. Hence we use the empirical estimators of ES and MS to compare its performance. We observe

that MS outperforms the ES for all the sample sizes which is considered in our simulation study.

Hence from our simulation study we can say that MS is a more preferable risk measure than ES,

where MS is also a coherent risk measure.
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1 Introduction

Let us go through some basic definitions and results to be used in the later part of our study.

Throughout the study, set of all n players will be denoted by N = {1, 2, ..., n}.

Definition 1.1. [2] A cooperative game in characteristic function form is an ordered pair (N, v),
where N = {1, 2, ..., n} is the set of all players and function v : 2N → R is the characteristic
function which assigns each subset (coalition) of N a real value.

For each coalition S ⊆ N , the value v(S) is called worth of the coalition or coalitional value for

S.

Definition 1.2. [2] In a cooperative game (N, v), for any subset M ⊆ N , the game (M, v) involv-
ing only the players of coalition M with respect to the same characteristic function v is called as
subgame of (N, v).

Definition 1.3. [2] A cooperative game (N, v) is said to be super-additive if v(S)+v(T ) ≤ v(S∪T )
for all coalitions S and T of N such that S ∩ T = φ.

Definition 1.4. [2] A cooperative game (N, v) is said to be sub-additive if v(S)+v(T ) ≥ v(S∪T )
for all coalitions S and T of N such that S ∩ T = φ.

149
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Equivalently a cooperative game (N, v) is said super-additive if (N,−v) is sub-additive and

vice-versa.

Definition 1.5. [2] A cooperative game (N, v) is said to be additive if v(S)+ v(T ) = v(S ∪T ) for
all coalitions S and T of N such that S ∩ T = φ.

Definition 1.6. [2] In a cooperative game (N, v), marginal contribution of player i ∈ N with
respect to a coalition S is the the value v(S ∪ {i})− v(S), where i ∈ N \ S

Definition 1.7. [8] A cooperative game (N, v) is said to be monotonic if v(S) ≤ v(T ) whenever
S ⊆ T ⊆ N .

If the players in set N with respect to the game (N, v) decide to work together, then a natural

question arises as how to distribute the coalitional value among them so that the division is fair

enough to everyone. In such cases we go for a solution vector as defined below.

Definition 1.8. [8] For a cooperative game (N, v), an allocation vector or a payoff vector is
an n-coordinated vector x = (x1, x2, ..., xn),

xi in the payoff vector above is the amount received by player i. Further for any coalition

S ⊆ N, x(S) is the sum of the payoffs received by players of the coalition S. That is x(S) =
∑

i∈S xi.

Definition 1.9. [8] In a cooperative game (N, v), a payoff vector x is said to be individually
rational if xi ≥ v({i}).

Definition 1.10. [2] In a cooperative game (N, v), a payoff vector x is said to be collective
rational if x(S) ≥

∑
i∈S xi for all S ⊆ N .

Definition 1.11. [2] In a cooperative game (N, v), a payoff vector x is said to be totally rational
or pareto efficient if x(S) = v(N).

In a cooperative game (N, v), pre-imputation [2] set is the collection of all pareto payoff

vectors, further imputation is the set of all pareto and totally rational vectors. Now we are

in a position to introduce the concept of core which will be an important tool to determine the

supermodularity of a game.

Definition 1.12. [2] In a cooperative game (N, v), a payoff vector x is said to be in the core, if x
is totally and collective rational. Further the collection of all such vectors is called core of the game
and is denoted by c(v). That is c(v) = {x ∈ Rn : x(S) ≥ v(S), x(N) = v(N);S ⊆ N}

[2] The Shapley value is an interesting solution concept in a cooperative game. Choosing a

particular solution concepts becomes an ambiguous work as it may not seem reasonable to many

players. Shapley [2] characterised a unique solution using a collection of intuitively reasonable

axioms.

Definition 1.13. [2] In a cooperative game (N, v), the Shapley Value φ is the solution (φsh
1 , φsh

2 , ..., φsh
n ),

where φsh
i =

∑
S⊆N\{i}

|S|!(|N |−|S|−1)!
|N |! [v(S ∪ {i})− v(S)] for all coalitions S in N .

Another way to calculate the Shapley value is by using the permutations of the player set N
as average of the marginal vectors of the game. That is φsh

i = 1
|N |!
∑

π∈Π mπ, where Π is the

collection of all permutations of N and mπ is the marginal contribution of playeri with respect to

all coalitions. It is to be noted here that the Shapley value is unique.
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Definition 1.14. [4] Two sets S and T are said to be crossing in N if S ∩ T �= φ, S\T �=
φ, T\S �= φ, S ∪ T �= N . Further a function f : 2N → R is called crossing submodular if
f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ) holds for all subset S and T of N .

Definition 1.15. [4] The family of sets S called a copartition of the set of players N if {N\S;S ∈
S}. Further Pk(N) is the collection of all the partitions S of N having at least k sets and Pk(N)

is the collection of all the copartitions S of N having at least k sets.

Definition 1.16. [4] A hypergraph G is defined as a pair (N,E), where N is the set of vertices
and E is the set of hyperedges between vertices. Each hyperedge E is the set, E ⊆ N .

Definition 1.17. [1] For any two elements x and y in a poset S, x ∨ y join and x ∧ y meet are
defined as the supremum and infimum of x and y respectively.

2 Examples of Supermodular Games

Here, we will discuss about the supermodularity of some popular games like: monopoly, bankruptcy,

airport and surplus sharing.

The Monopoly Firm Game

[7] Consider a firm which manufactures non-negative quantity of m products j = 1, 2, ...,m.Let x
be an m vector which denotes production of the m products. That is x = (x1, x2, ..., xm), where xi

denotes the production of ith product and further let c(x) denote the total cost of the firm for the

production vector x.
We consider the firm to be a monopoly with its monopoly production level y, where y is an m
vector as defined in the case of x above. Let us consider that the firm has n consumers and let

N = {1, 2, ..., n} be the set of consumers/players. Given that market price of the product would

yield a total demand equal to the monopoly production level y. Let the consumption of each player

i be the non-negative vector x(i) and
∑

i∈N x(i) = y, where in x(i) = (xi
1, x

i
2, ..., x

i
m), xi

j denotes

the product xj consumed by player i.
The firm sets prices for its m products such that ri is the revenue received from vector x(i) demand

by the player i. The firm wants to find the n-vector r of revenues from n players such that the total

revenue generated is equal to the total cost.

That is
∑

i∈N = c(y).
Further the firm expects no rival firms to produce the demands for consumers amongst the n

consumers for less than the total revenue obtained from those consumers by the firm.

That is
∑

i∈S ri ≤ c(
∑

i∈S xi), where S ⊆ N us a subset of consumers N .

Now define v : 2N → R by v(S) = −c(
∑

i∈S xi) for each subset S of N .

Then the game (N, v) is called the game of monopoly firm.

Consider a set S containing n tuples and c(x) be the cost function corresponding to the vectors

of S. Then the cost function is said to exhibit weak cost complementary if c(x + y) − c(x) ≥
c(x+ y + z)− c(x+ z) for all vectors x, y, z ∈ S such that yi > 0 implies zi = 0.

Theorem 2.1. Consider the cooperative game (N, v) of the monopoly firm.
(a)[7] If x(i)∧x(j) = 0 for each pair of distinct consumers i and j and if the production cost function
c(x) exhibits weak cost complementarity then the cooperative game (N, v) is a supermodular game.
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(b)[9] If the production cost function c(x) exhibits cost complementarity, then the cooperative
game (N, v) is a supermodular game.

The Bankruptcy Game

[3] Bankruptcy problems arise when a number of individuals claim on a particular resource whose

total worth is insufficient to meet the claims of the individuals. For example we can consider the

property of a dying man who owed from a lot of person. But if we divide the property amongst the

claimants it turns out to be sufficiently less to the claims of the claimants.

Mathematically a bankruptcy problem is written as an ordered pair (E, d) in R×Rn is he total

value of the estate, 0 ≤ d1 ≤ d2 ≤ ... ≤ dn is such that 0 ≤ E ≤ d1 + d2 + ... + dn = D. The dsi
above are claims made by players i from the set of players N = 1, 2, ..., n.

There are different ways to divide the value E among the players assigning each claimant a fair

and a justified amount. But here we shall refrain ourself from the ways of division and particularly

focus on the supermodularity of the bankruptcy game.

For any bankruptcy problem (E, d), a bankruptcy game vE,d : 2N → R by vE,d(S) = (E −
d(N − S)) = max{E − d(N − S), 0} for all S ⊆ N . In other words vE,d is that worth of the estate

which is not claimed by the complement of S.

Theorem 2.2. [3] Bankruptcy game is a supermodular game.

The Surplus Sharing Game

[10] Here we consider n number of players/agents operating either independently or cooperatively

forming coalitions including the grand coalition. LetN = {1, 2, ..., n} be the set of all players/agents.
Further let us suppose ri to be the return when player i acts independently and q to be the return

when all players act cooperatively and form the grand coalition. Assume that q >
∑

i∈N ri, thus
n agents acting cooperatively receive a joint surplus of q −

∑
i∈N ri > 0 compared to what they

would have received in case they operate independently.

Surplus sharing problem basically involves in finding a payoff vector x = (x1, x2, ..., xn), where

xi is the return given to each player i such that xi is greater to the return that player i could have

earned working independently. That is yi ≥ ri for eery player i. Further sum of the distributions

of all players is equal to the return by n agents contributing cooperatively. That is q =
∑

i∈N xi.

Theorem 2.3. [10] For each coalition S, define v : 2N → R by v(S) =
∑

i∈S ri if S �= N and
v(N) = q, then the game (N, v) is a supermodular game if and only if q ≥

∑
i∈N ri.

It may be noted here that x is a solution for the for the surplus sharing problem if and only if

x is in the core of the game (N, v).

The Airport Games

[6] Here we discuss on two games related to an airport. In particular ”Airport Cost Game” and

”Airport Profit Game ”. The characteristic function of the former game deals with the cost re-

quired to construct a runway for different flights that land or take off at an airport whereas the

characteristic function of the latter game deals with the profit earned by the airport authority by

allowing flights to avail the runway of the airport.
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Let N = {1, 2, ..., n} be the set of all flights(players) that might use the runway of the airport.

Let ri be the revenue earned by airport authority from flight i and ci be the cost required to

construct the runway for flight i. Consider runway length to be the only salient feature for a flight

to be used in the airport.Without the loss of generality let us consider the players of N = {1, 2, ..., n}
such that c1 ≤ c2 ≤ ... ≤ cn.That is, we consider the sequence of the players in N in ascending

order of their costs for preparing the corresponding runway.

If ci and cj are costs corresponding to flights i and j respectively such that ci ≤ cj , then the

runway prepared for flight i is sufficient enough for flight j.
Airport Cost Game [6] For set N = {1, 2, ..., n} of flights, define v : 2N −→ R by

v(S) = maxi∈Sci. In other words game v is the maximum cost required by a flight in S.
Airport Profit Game [6] Airport profit game is where we get profit earned by an airport by

allowing a set of flights to use the runway.

So v : 2N −→ R defined as

v(S) =
∑

i∈S ri −maxi∈Sci is known as the airport profit game.

Theorem 2.4. [5] The Airport Profit Game (N, v) is supermodular.

3 Computations in Supermodular Games

Here we will study the strong and weak least cores of a supermodular game using the theory of

minimising crossing submodular functions. Further we use the formula to determine the strong and

weak least core values of the induced subgraph game.

Strong and Weak Least Core of Supermodular Games

As the core of a game consists of payoff vectors which are individually rational, pareto efficient and

collective rational, let us now consider the following definitions for further extension of the core

concept.

Definition 3.1. [4] For ε ∈ R, a payoff vector x ∈ Rn is said to be in the strong (−ε)− core if
the loss of a deviating nontrivial coalition is at least ε.That is x(S) − v(S) ≥ ε, for any coalition
S ⊆ N .

Definition 3.2. [4] For ε ∈ R,a payoff vector x ∈ Rn is said to be in the weak (−ε)− core if the
loss of a deviating nontrivial coalition is at least ε on average. That is x(S)− v(S) ≥ ε|S|, for any
coalition S ⊆ N .

By relating the definitions given above to the definition of the core of a game we note that a

core of a game is simply the strong 0-core and the weak 0-core.

Definition 3.3. [4] The minimum ε ∈ R for which the strong ε-core is nonempty is called as
strong least core value of the game. Further the strong least core of a game is the ε-core for
the corresponding strong least core value ε.

Definition 3.4. [4] The minimum ε ∈ R for which the weak ε-core is nonempty is called as weak
least core value of the game. Further the weak least core of a game is the ε-core for the
corresponding weak least core value ε.
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As the core of a supermodular game is nonempty[] so the strong and weak least core values of a

supermodular game defined above is always nonpositive. Therefore it is convenient to write strong

and weak −ε-cores instead of strong and weak ε-cores. Throughout the chapter we consider strong
and weak −ε-core instead of strong and weak ε-core.

Let δs(ε, S) = ε and δs(ε, S) = ε|S|. Then for all i ∈ N and S ⊆ N the strong and weak least

core values of a game can be computed by solving

x(S) ≥v(S) + δtype(ε, S)

x(N) =v(N)

x(v) ≥0

where δtype represents δs in case of strong core and δw in case of weak core.

Now let us fix ε ≥ 0 and define a function f type
ε : 2N → R by

f type
ε (S) =

⎧⎨⎩ 0 if S = φ,
−v(S)− δtype(ε, S) ifφ � S � N,
−v(N) ifS = N

Clearly the function defined above is crossing submodular.

Definition 3.5. [4] For any function f : 2N → R, define extended polymatroid associated with
f as P (f) = {x ∈ Rn|x(S) ≤ f(S);S ⊆ N}. Further ptypeε (S) = max{x(N)|x ∈ P (f type

ε )}.

We now present two theorems for computing strong and weak least cores of a supermodular

game.

Theorem 3.6. [4] The strong least core value of a supermodular game (N, v) is

−min{minS∈P2(N)
1

|S| (v(N)−
∑
S∈S

v(S)),minS∈P̄2(N)

1

|S| ((|S| − 1)v(N)−
∑
S∈S

v(S))}

.

Theorem 3.7. [4] The weak least core value of a supermodular game game (N, v) is − 1
|N |minS∈P̄2(N)(v(N)−

1
(|S|−1)

∑
S∈S v(S)).

Computation of Least Core in Induced Subgraph Game

Let N = {1, 2, ..., n} be the set of n vertices and G = (N,E,w) be a weighted hypergraph, where

E is the set of hyperedges and w : E → R is a weight function which assigns every hyperedge e a

weight in R. In case of hypergraph, hyperedge e is a subset of the set of vertices N , that is e ⊆ N .

Definition 3.8. [4] For any weighted hypergraph G = (N,E,w),the induced subgraph game is
the cooperative game (N, v), where v : 2N → R is the total weight of the hyperedges e ∈ E with
e ⊆ S.That is v(S) =

∑
e⊆S w(e).

Being the sum of the weights of the hyperedges clearly the game (N, v) is supermodular.
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Definition 3.9. [4] Let S ⊆ N be a set of vertices, then we say that a hyperedge e is cut by
coalition S if e � S and e � N \ S.The total weight of hyperedges e cut by a coalition S is called as
the cut weight of S and is denoted by c(S).A minimum cut is the minimum cut weight among
all possible coalitions of N and is denoted by c∗(G), where G = (N,E,w) is the associated weighted
hypergraph.

Definition 3.10. [4] A hyperedge e is said to be cut by a partiton S of N if e � S for all S ⊆ S.The
total weight of hyperedges cut by a partiotion S of N is called cut weight of the partition S denoted
by c(S).That is c(S) =

∑
e∈E;e�S∈S w(e). Further c̄(G) =

∑
S∈S c(S)− c(S).

Theorem 3.11. [4] The strong and weak least core value of the induced subgraph game associated

with a hypergraph G = (N,E,w) is −minS∈P2(N)
c(S)
|S| .

Theorem 3.12. [4] The strong and weak least core value of the induced subgraph game associated

with a hypergraph G = (N,E,w) is −minS∈P2(N)
c(S)
|S| .

Theorem 3.13. [4] The strong least core value of the induced subgraph game associated with the

subgraph G = (N,E,w) is at least − c∗(G)
2 .
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